MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carduniima Unicode version

Theorem carduniima 7966
Description: The union of the image of a mapping to cardinals is a cardinal. Proposition 11.16 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
carduniima  |-  ( A  e.  B  ->  ( F : A --> ( om  u.  ran  aleph )  ->  U. ( F " A
)  e.  ( om  u.  ran  aleph ) ) )

Proof of Theorem carduniima
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ffun 5584 . . . . 5  |-  ( F : A --> ( om  u.  ran  aleph )  ->  Fun  F )
2 funimaexg 5521 . . . . 5  |-  ( ( Fun  F  /\  A  e.  B )  ->  ( F " A )  e. 
_V )
31, 2sylan 458 . . . 4  |-  ( ( F : A --> ( om  u.  ran  aleph )  /\  A  e.  B )  ->  ( F " A
)  e.  _V )
43expcom 425 . . 3  |-  ( A  e.  B  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( F " A
)  e.  _V )
)
5 ffn 5582 . . . . . . . . 9  |-  ( F : A --> ( om  u.  ran  aleph )  ->  F  Fn  A )
6 fnima 5554 . . . . . . . . 9  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
75, 6syl 16 . . . . . . . 8  |-  ( F : A --> ( om  u.  ran  aleph )  -> 
( F " A
)  =  ran  F
)
8 frn 5588 . . . . . . . 8  |-  ( F : A --> ( om  u.  ran  aleph )  ->  ran  F  C_  ( om  u.  ran  aleph ) )
97, 8eqsstrd 3374 . . . . . . 7  |-  ( F : A --> ( om  u.  ran  aleph )  -> 
( F " A
)  C_  ( om  u.  ran  aleph ) )
109sseld 3339 . . . . . 6  |-  ( F : A --> ( om  u.  ran  aleph )  -> 
( x  e.  ( F " A )  ->  x  e.  ( om  u.  ran  aleph ) ) )
11 iscard3 7963 . . . . . 6  |-  ( (
card `  x )  =  x  <->  x  e.  ( om  u.  ran  aleph ) )
1210, 11syl6ibr 219 . . . . 5  |-  ( F : A --> ( om  u.  ran  aleph )  -> 
( x  e.  ( F " A )  ->  ( card `  x
)  =  x ) )
1312ralrimiv 2780 . . . 4  |-  ( F : A --> ( om  u.  ran  aleph )  ->  A. x  e.  ( F " A ) (
card `  x )  =  x )
14 carduni 7857 . . . 4  |-  ( ( F " A )  e.  _V  ->  ( A. x  e.  ( F " A ) (
card `  x )  =  x  ->  ( card `  U. ( F " A ) )  = 
U. ( F " A ) ) )
1513, 14syl5 30 . . 3  |-  ( ( F " A )  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( card `  U. ( F
" A ) )  =  U. ( F
" A ) ) )
164, 15syli 35 . 2  |-  ( A  e.  B  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( card `  U. ( F
" A ) )  =  U. ( F
" A ) ) )
17 iscard3 7963 . 2  |-  ( (
card `  U. ( F
" A ) )  =  U. ( F
" A )  <->  U. ( F " A )  e.  ( om  u.  ran  aleph
) )
1816, 17syl6ib 218 1  |-  ( A  e.  B  ->  ( F : A --> ( om  u.  ran  aleph )  ->  U. ( F " A
)  e.  ( om  u.  ran  aleph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948    u. cun 3310   U.cuni 4007   omcom 4836   ran crn 4870   "cima 4872   Fun wfun 5439    Fn wfn 5440   -->wf 5441   ` cfv 5445   cardccrd 7811   alephcale 7812
This theorem is referenced by:  cardinfima  7967
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-riota 6540  df-recs 6624  df-rdg 6659  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-oi 7468  df-har 7515  df-card 7815  df-aleph 7816
  Copyright terms: Public domain W3C validator