MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucfil Structured version   Unicode version

Theorem caucfil 19238
Description: A Cauchy sequence predicate can be expressed in terms of the Cauchy filter predicate for a suitably chosen filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
caucfil.1  |-  Z  =  ( ZZ>= `  M )
caucfil.2  |-  L  =  ( ( X  FilMap  F ) `  ( ZZ>= " Z ) )
Assertion
Ref Expression
caucfil  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( F  e.  ( Cau `  D
)  <->  L  e.  (CauFil `  D ) ) )

Proof of Theorem caucfil
Dummy variables  j 
k  m  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 939 . . . . . . . 8  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  A. m  e.  ( ZZ>= `  k )
( ( F `  k ) D ( F `  m ) )  <  x ) )
2 caucfil.1 . . . . . . . . . . . . . 14  |-  Z  =  ( ZZ>= `  M )
32uztrn2 10505 . . . . . . . . . . . . 13  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
43adantll 696 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  Z )
5 simpll3 999 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  F : Z
--> X )
6 fdm 5597 . . . . . . . . . . . . 13  |-  ( F : Z --> X  ->  dom  F  =  Z )
75, 6syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  dom  F  =  Z )
84, 7eleqtrrd 2515 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  dom  F )
95, 4ffvelrnd 5873 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  k )  e.  X
)
108, 9jca 520 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  e.  dom  F  /\  ( F `  k )  e.  X ) )
1110biantrurd 496 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x  <->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  X )  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) )
12 uzss 10508 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  k )  C_  ( ZZ>=
`  j ) )
1312adantl 454 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ZZ>= `  k )  C_  ( ZZ>=
`  j ) )
1413sseld 3349 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( m  e.  ( ZZ>= `  k )  ->  m  e.  ( ZZ>= `  j ) ) )
1514pm4.71rd 618 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( m  e.  ( ZZ>= `  k )  <->  ( m  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  k )
) ) )
1615imbi1d 310 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x )  <->  ( (
m  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  k )
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x ) ) )
17 impexp 435 . . . . . . . . . . 11  |-  ( ( ( m  e.  (
ZZ>= `  j )  /\  m  e.  ( ZZ>= `  k ) )  -> 
( ( F `  k ) D ( F `  m ) )  <  x )  <-> 
( m  e.  (
ZZ>= `  j )  -> 
( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) ) )
1816, 17syl6bb 254 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x )  <->  ( m  e.  ( ZZ>= `  j )  ->  ( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) ) ) )
1918ralbidv2 2729 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x  <->  A. m  e.  (
ZZ>= `  j ) ( m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x ) ) )
2011, 19bitr3d 248 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. m  e.  ( ZZ>= `  k )
( ( F `  k ) D ( F `  m ) )  <  x )  <->  A. m  e.  ( ZZ>=
`  j ) ( m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x ) ) )
211, 20syl5bb 250 . . . . . . 7  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  A. m  e.  ( ZZ>= `  j )
( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) ) )
2221ralbidva 2723 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x ) ) )
23 r19.26-2 2841 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( ( m  e.  ( ZZ>= `  k )  ->  ( ( F `  k ) D ( F `  m ) )  <  x )  /\  ( k  e.  ( ZZ>= `  m )  ->  ( ( F `  m ) D ( F `  k ) )  <  x ) )  <->  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x )  /\  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x ) ) )
24 eleq1 2498 . . . . . . . . . . . . 13  |-  ( u  =  k  ->  (
u  e.  ( ZZ>= `  m )  <->  k  e.  ( ZZ>= `  m )
) )
25 fveq2 5730 . . . . . . . . . . . . . . 15  |-  ( u  =  k  ->  ( F `  u )  =  ( F `  k ) )
2625oveq2d 6099 . . . . . . . . . . . . . 14  |-  ( u  =  k  ->  (
( F `  m
) D ( F `
 u ) )  =  ( ( F `
 m ) D ( F `  k
) ) )
2726breq1d 4224 . . . . . . . . . . . . 13  |-  ( u  =  k  ->  (
( ( F `  m ) D ( F `  u ) )  <  x  <->  ( ( F `  m ) D ( F `  k ) )  < 
x ) )
2824, 27imbi12d 313 . . . . . . . . . . . 12  |-  ( u  =  k  ->  (
( u  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  u ) )  <  x )  <-> 
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x ) ) )
2928cbvralv 2934 . . . . . . . . . . 11  |-  ( A. u  e.  ( ZZ>= `  j ) ( u  e.  ( ZZ>= `  m
)  ->  ( ( F `  m ) D ( F `  u ) )  < 
x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x ) )
3029ralbii 2731 . . . . . . . . . 10  |-  ( A. m  e.  ( ZZ>= `  j ) A. u  e.  ( ZZ>= `  j )
( u  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  u ) )  <  x )  <->  A. m  e.  ( ZZ>=
`  j ) A. k  e.  ( ZZ>= `  j ) ( k  e.  ( ZZ>= `  m
)  ->  ( ( F `  m ) D ( F `  k ) )  < 
x ) )
31 fveq2 5730 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  k )
)
3231eleq2d 2505 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
u  e.  ( ZZ>= `  m )  <->  u  e.  ( ZZ>= `  k )
) )
33 fveq2 5730 . . . . . . . . . . . . . 14  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
3433oveq1d 6098 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  (
( F `  m
) D ( F `
 u ) )  =  ( ( F `
 k ) D ( F `  u
) ) )
3534breq1d 4224 . . . . . . . . . . . 12  |-  ( m  =  k  ->  (
( ( F `  m ) D ( F `  u ) )  <  x  <->  ( ( F `  k ) D ( F `  u ) )  < 
x ) )
3632, 35imbi12d 313 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
( u  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  u ) )  <  x )  <-> 
( u  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  u ) )  <  x ) ) )
37 eleq1 2498 . . . . . . . . . . . 12  |-  ( u  =  m  ->  (
u  e.  ( ZZ>= `  k )  <->  m  e.  ( ZZ>= `  k )
) )
38 fveq2 5730 . . . . . . . . . . . . . 14  |-  ( u  =  m  ->  ( F `  u )  =  ( F `  m ) )
3938oveq2d 6099 . . . . . . . . . . . . 13  |-  ( u  =  m  ->  (
( F `  k
) D ( F `
 u ) )  =  ( ( F `
 k ) D ( F `  m
) ) )
4039breq1d 4224 . . . . . . . . . . . 12  |-  ( u  =  m  ->  (
( ( F `  k ) D ( F `  u ) )  <  x  <->  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
4137, 40imbi12d 313 . . . . . . . . . . 11  |-  ( u  =  m  ->  (
( u  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  u ) )  <  x )  <-> 
( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) ) )
4236, 41cbvral2v 2942 . . . . . . . . . 10  |-  ( A. m  e.  ( ZZ>= `  j ) A. u  e.  ( ZZ>= `  j )
( u  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  u ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  j ) ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
43 ralcom 2870 . . . . . . . . . 10  |-  ( A. m  e.  ( ZZ>= `  j ) A. k  e.  ( ZZ>= `  j )
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  j ) ( k  e.  ( ZZ>= `  m
)  ->  ( ( F `  m ) D ( F `  k ) )  < 
x ) )
4430, 42, 433bitr3i 268 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  j ) ( k  e.  ( ZZ>= `  m
)  ->  ( ( F `  m ) D ( F `  k ) )  < 
x ) )
4544anbi2i 677 . . . . . . . 8  |-  ( ( A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  j ) ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x )  /\  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) )  <->  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x )  /\  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x ) ) )
46 anidm 627 . . . . . . . 8  |-  ( ( A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  j ) ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x )  /\  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( m  e.  (
ZZ>= `  k )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) )  <->  A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  j ) ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
4723, 45, 463bitr2i 266 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  j )
( ( m  e.  ( ZZ>= `  k )  ->  ( ( F `  k ) D ( F `  m ) )  <  x )  /\  ( k  e.  ( ZZ>= `  m )  ->  ( ( F `  m ) D ( F `  k ) )  <  x ) )  <->  A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  j ) ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
48 simpll1 997 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  D  e.  ( * Met `  X
) )
49 simpll3 999 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  F : Z --> X )
502uztrn2 10505 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  m  e.  ( ZZ>= `  j ) )  ->  m  e.  Z )
5150ad2ant2l 728 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  m  e.  Z )
5249, 51ffvelrnd 5873 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  ( F `  m )  e.  X )
539adantrr 699 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  ( F `  k )  e.  X )
54 xmetsym 18379 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  m )  e.  X  /\  ( F `  k
)  e.  X )  ->  ( ( F `
 m ) D ( F `  k
) )  =  ( ( F `  k
) D ( F `
 m ) ) )
5548, 52, 53, 54syl3anc 1185 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( F `  m
) D ( F `
 k ) )  =  ( ( F `
 k ) D ( F `  m
) ) )
5655breq1d 4224 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( ( F `  m ) D ( F `  k ) )  <  x  <->  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
5756imbi2d 309 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x )  <-> 
( k  e.  (
ZZ>= `  m )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) ) )
5857anbi2d 686 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( ( m  e.  ( ZZ>= `  k )  ->  ( ( F `  k ) D ( F `  m ) )  <  x )  /\  ( k  e.  ( ZZ>= `  m )  ->  ( ( F `  m ) D ( F `  k ) )  <  x ) )  <->  ( ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x )  /\  (
k  e.  ( ZZ>= `  m )  ->  (
( F `  k
) D ( F `
 m ) )  <  x ) ) ) )
59 jaob 760 . . . . . . . . . 10  |-  ( ( ( m  e.  (
ZZ>= `  k )  \/  k  e.  ( ZZ>= `  m ) )  -> 
( ( F `  k ) D ( F `  m ) )  <  x )  <-> 
( ( m  e.  ( ZZ>= `  k )  ->  ( ( F `  k ) D ( F `  m ) )  <  x )  /\  ( k  e.  ( ZZ>= `  m )  ->  ( ( F `  k ) D ( F `  m ) )  <  x ) ) )
60 eluzelz 10498 . . . . . . . . . . . . 13  |-  ( k  e.  ( ZZ>= `  j
)  ->  k  e.  ZZ )
61 eluzelz 10498 . . . . . . . . . . . . 13  |-  ( m  e.  ( ZZ>= `  j
)  ->  m  e.  ZZ )
62 uztric 10509 . . . . . . . . . . . . 13  |-  ( ( k  e.  ZZ  /\  m  e.  ZZ )  ->  ( m  e.  (
ZZ>= `  k )  \/  k  e.  ( ZZ>= `  m ) ) )
6360, 61, 62syl2an 465 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
)  ->  ( m  e.  ( ZZ>= `  k )  \/  k  e.  ( ZZ>=
`  m ) ) )
6463adantl 454 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
m  e.  ( ZZ>= `  k )  \/  k  e.  ( ZZ>= `  m )
) )
65 pm5.5 328 . . . . . . . . . . 11  |-  ( ( m  e.  ( ZZ>= `  k )  \/  k  e.  ( ZZ>= `  m )
)  ->  ( (
( m  e.  (
ZZ>= `  k )  \/  k  e.  ( ZZ>= `  m ) )  -> 
( ( F `  k ) D ( F `  m ) )  <  x )  <-> 
( ( F `  k ) D ( F `  m ) )  <  x ) )
6664, 65syl 16 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( ( m  e.  ( ZZ>= `  k )  \/  k  e.  ( ZZ>=
`  m ) )  ->  ( ( F `
 k ) D ( F `  m
) )  <  x
)  <->  ( ( F `
 k ) D ( F `  m
) )  <  x
) )
6759, 66syl5bbr 252 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( ( m  e.  ( ZZ>= `  k )  ->  ( ( F `  k ) D ( F `  m ) )  <  x )  /\  ( k  e.  ( ZZ>= `  m )  ->  ( ( F `  k ) D ( F `  m ) )  <  x ) )  <->  ( ( F `
 k ) D ( F `  m
) )  <  x
) )
6858, 67bitrd 246 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  /\  (
k  e.  ( ZZ>= `  j )  /\  m  e.  ( ZZ>= `  j )
) )  ->  (
( ( m  e.  ( ZZ>= `  k )  ->  ( ( F `  k ) D ( F `  m ) )  <  x )  /\  ( k  e.  ( ZZ>= `  m )  ->  ( ( F `  m ) D ( F `  k ) )  <  x ) )  <->  ( ( F `
 k ) D ( F `  m
) )  <  x
) )
69682ralbidva 2747 . . . . . . 7  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  j ) ( ( m  e.  ( ZZ>= `  k )  ->  (
( F `  k
) D ( F `
 m ) )  <  x )  /\  ( k  e.  (
ZZ>= `  m )  -> 
( ( F `  m ) D ( F `  k ) )  <  x ) )  <->  A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  j ) ( ( F `  k ) D ( F `  m ) )  < 
x ) )
7047, 69syl5bbr 252 . . . . . 6  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  j ) ( m  e.  ( ZZ>= `  k
)  ->  ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
7122, 70bitrd 246 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ  /\  F : Z --> X )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
7271rexbidva 2724 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
73 uzf 10493 . . . . . 6  |-  ZZ>= : ZZ --> ~P ZZ
74 ffn 5593 . . . . . 6  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
7573, 74ax-mp 8 . . . . 5  |-  ZZ>=  Fn  ZZ
76 uzssz 10507 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
772, 76eqsstri 3380 . . . . 5  |-  Z  C_  ZZ
78 raleq 2906 . . . . . . 7  |-  ( u  =  ( ZZ>= `  j
)  ->  ( A. m  e.  u  (
( F `  k
) D ( F `
 m ) )  <  x  <->  A. m  e.  ( ZZ>= `  j )
( ( F `  k ) D ( F `  m ) )  <  x ) )
7978raleqbi1dv 2914 . . . . . 6  |-  ( u  =  ( ZZ>= `  j
)  ->  ( A. k  e.  u  A. m  e.  u  (
( F `  k
) D ( F `
 m ) )  <  x  <->  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
8079rexima 5979 . . . . 5  |-  ( (
ZZ>=  Fn  ZZ  /\  Z  C_  ZZ )  ->  ( E. u  e.  ( ZZ>=
" Z ) A. k  e.  u  A. m  e.  u  (
( F `  k
) D ( F `
 m ) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  j ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
8175, 77, 80mp2an 655 . . . 4  |-  ( E. u  e.  ( ZZ>= " Z ) A. k  e.  u  A. m  e.  u  ( ( F `  k ) D ( F `  m ) )  < 
x  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  j ) ( ( F `  k ) D ( F `  m ) )  < 
x )
8272, 81syl6bbr 256 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x )  <->  E. u  e.  ( ZZ>= " Z ) A. k  e.  u  A. m  e.  u  (
( F `  k
) D ( F `
 m ) )  <  x ) )
8382ralbidv 2727 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x )  <->  A. x  e.  RR+  E. u  e.  ( ZZ>= " Z ) A. k  e.  u  A. m  e.  u  (
( F `  k
) D ( F `
 m ) )  <  x ) )
84 elfvdm 5759 . . . . . . 7  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
8584adantr 453 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ )  ->  X  e.  dom  * Met )
86 cnex 9073 . . . . . 6  |-  CC  e.  _V
8785, 86jctir 526 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ )  ->  ( X  e. 
dom  * Met  /\  CC  e.  _V ) )
88 zsscn 10292 . . . . . . 7  |-  ZZ  C_  CC
8977, 88sstri 3359 . . . . . 6  |-  Z  C_  CC
9089jctr 528 . . . . 5  |-  ( F : Z --> X  -> 
( F : Z --> X  /\  Z  C_  CC ) )
91 elpm2r 7036 . . . . 5  |-  ( ( ( X  e.  dom  * Met  /\  CC  e.  _V )  /\  ( F : Z --> X  /\  Z  C_  CC ) )  ->  F  e.  ( X  ^pm  CC )
)
9287, 90, 91syl2an 465 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ )  /\  F : Z
--> X )  ->  F  e.  ( X  ^pm  CC ) )
93 simpl 445 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ )  ->  D  e.  ( * Met `  X
) )
94 simpr 449 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ )  ->  M  e.  ZZ )
952, 93, 94iscau3 19233 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ )  ->  ( F  e.  ( Cau `  D
)  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) ) )
9695baibd 877 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ )  /\  F  e.  ( X  ^pm  CC ) )  ->  ( F  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
9792, 96syldan 458 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  M  e.  ZZ )  /\  F : Z
--> X )  ->  ( F  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
98973impa 1149 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( F  e.  ( Cau `  D
)  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) )
99 caucfil.2 . . . 4  |-  L  =  ( ( X  FilMap  F ) `  ( ZZ>= " Z ) )
10099eleq1i 2501 . . 3  |-  ( L  e.  (CauFil `  D
)  <->  ( ( X 
FilMap  F ) `  ( ZZ>=
" Z ) )  e.  (CauFil `  D
) )
1012uzfbas 17932 . . . 4  |-  ( M  e.  ZZ  ->  ( ZZ>=
" Z )  e.  ( fBas `  Z
) )
102 fmcfil 19227 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  ( ZZ>= " Z
)  e.  ( fBas `  Z )  /\  F : Z --> X )  -> 
( ( ( X 
FilMap  F ) `  ( ZZ>=
" Z ) )  e.  (CauFil `  D
)  <->  A. x  e.  RR+  E. u  e.  ( ZZ>= " Z ) A. k  e.  u  A. m  e.  u  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
103101, 102syl3an2 1219 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( ( ( X  FilMap  F ) `  ( ZZ>= " Z ) )  e.  (CauFil `  D
)  <->  A. x  e.  RR+  E. u  e.  ( ZZ>= " Z ) A. k  e.  u  A. m  e.  u  ( ( F `  k ) D ( F `  m ) )  < 
x ) )
104100, 103syl5bb 250 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( L  e.  (CauFil `  D )  <->  A. x  e.  RR+  E. u  e.  ( ZZ>= " Z ) A. k  e.  u  A. m  e.  u  (
( F `  k
) D ( F `
 m ) )  <  x ) )
10583, 98, 1043bitr4d 278 1  |-  ( ( D  e.  ( * Met `  X )  /\  M  e.  ZZ  /\  F : Z --> X )  ->  ( F  e.  ( Cau `  D
)  <->  L  e.  (CauFil `  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   _Vcvv 2958    C_ wss 3322   ~Pcpw 3801   class class class wbr 4214   dom cdm 4880   "cima 4883    Fn wfn 5451   -->wf 5452   ` cfv 5456  (class class class)co 6083    ^pm cpm 7021   CCcc 8990    < clt 9122   ZZcz 10284   ZZ>=cuz 10490   RR+crp 10614   * Metcxmt 16688   fBascfbas 16691    FilMap cfm 17967  CauFilccfil 19207   Caucca 19208
This theorem is referenced by:  cmetcaulem  19243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-map 7022  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-z 10285  df-uz 10491  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ico 10924  df-rest 13652  df-psmet 16696  df-xmet 16697  df-bl 16699  df-fbas 16701  df-fg 16702  df-fil 17880  df-fm 17972  df-cfil 19210  df-cau 19211
  Copyright terms: Public domain W3C validator