MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvg Unicode version

Theorem caucvg 12460
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Proof shortened by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvg.1  |-  Z  =  ( ZZ>= `  M )
caucvg.2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
caucvg.3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
caucvg.4  |-  ( ph  ->  F  e.  V )
Assertion
Ref Expression
caucvg  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    j, k, x, F    j, M, k, x    ph, j, k, x   
j, Z, k, x
Allowed substitution hints:    V( x, j, k)

Proof of Theorem caucvg
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 fveq2 5719 . . . . . 6  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
21cbvmptv 4292 . . . . 5  |-  ( k  e.  Z  |->  ( F `
 k ) )  =  ( n  e.  Z  |->  ( F `  n ) )
3 caucvg.1 . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
4 uzssz 10494 . . . . . . . . . 10  |-  ( ZZ>= `  M )  C_  ZZ
53, 4eqsstri 3370 . . . . . . . . 9  |-  Z  C_  ZZ
6 zssre 10278 . . . . . . . . 9  |-  ZZ  C_  RR
75, 6sstri 3349 . . . . . . . 8  |-  Z  C_  RR
87a1i 11 . . . . . . 7  |-  ( ph  ->  Z  C_  RR )
9 caucvg.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
102eqcomi 2439 . . . . . . . 8  |-  ( n  e.  Z  |->  ( F `
 n ) )  =  ( k  e.  Z  |->  ( F `  k ) )
119, 10fmptd 5884 . . . . . . 7  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) ) : Z --> CC )
12 1rp 10605 . . . . . . . . . . 11  |-  1  e.  RR+
13 ne0i 3626 . . . . . . . . . . 11  |-  ( 1  e.  RR+  ->  RR+  =/=  (/) )
1412, 13ax-mp 8 . . . . . . . . . 10  |-  RR+  =/=  (/)
15 caucvg.3 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
16 r19.2z 3709 . . . . . . . . . 10  |-  ( (
RR+  =/=  (/)  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
1714, 15, 16sylancr 645 . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
18 eluzel2 10482 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1918, 3eleq2s 2527 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  M  e.  ZZ )
2019a1d 23 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  M  e.  ZZ ) )
2120rexlimiv 2816 . . . . . . . . . 10  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  ->  M  e.  ZZ )
2221rexlimivw 2818 . . . . . . . . 9  |-  ( E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  M  e.  ZZ )
2317, 22syl 16 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
243uzsup 11232 . . . . . . . 8  |-  ( M  e.  ZZ  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
2523, 24syl 16 . . . . . . 7  |-  ( ph  ->  sup ( Z ,  RR* ,  <  )  = 
+oo )
265sseli 3336 . . . . . . . . . . . . . . . 16  |-  ( j  e.  Z  ->  j  e.  ZZ )
275sseli 3336 . . . . . . . . . . . . . . . 16  |-  ( k  e.  Z  ->  k  e.  ZZ )
28 eluz 10488 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
2926, 27, 28syl2an 464 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
3029biimprd 215 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( j  <_  k  ->  k  e.  ( ZZ>= `  j ) ) )
31 fveq2 5719 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
32 eqid 2435 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  Z  |->  ( F `
 n ) )  =  ( n  e.  Z  |->  ( F `  n ) )
33 fvex 5733 . . . . . . . . . . . . . . . . . . 19  |-  ( F `
 n )  e. 
_V
3431, 32, 33fvmpt3i 5800 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  Z  ->  (
( n  e.  Z  |->  ( F `  n
) ) `  k
)  =  ( F `
 k ) )
35 fveq2 5719 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  ( F `  n )  =  ( F `  j ) )
3635, 32, 33fvmpt3i 5800 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  Z  ->  (
( n  e.  Z  |->  ( F `  n
) ) `  j
)  =  ( F `
 j ) )
3734, 36oveqan12rd 6092 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) )  =  ( ( F `  k )  -  ( F `  j )
) )
3837fveq2d 5723 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  =  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
3938breq1d 4214 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x  <->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
4039biimprd 215 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  -> 
( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x ) )
4130, 40imim12d 70 . . . . . . . . . . . . 13  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( k  e.  ( ZZ>= `  j )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( j  <_ 
k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) )
4241ex 424 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  (
k  e.  Z  -> 
( ( k  e.  ( ZZ>= `  j )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( j  <_ 
k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) ) )
4342com23 74 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  -> 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( k  e.  Z  ->  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) ) )
4443ralimdv2 2778 . . . . . . . . . 10  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  A. k  e.  Z  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) )
4544reximia 2803 . . . . . . . . 9  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  ->  E. j  e.  Z  A. k  e.  Z  ( j  <_  k  ->  ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x ) )
4645ralimi 2773 . . . . . . . 8  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  Z  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) )
4715, 46syl 16 . . . . . . 7  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  Z  (
j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `  n
) ) `  k
)  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x
) )
488, 11, 25, 47caucvgr 12457 . . . . . 6  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) )  e.  dom  ~~> r  )
4911, 25rlimdm 12333 . . . . . 6  |-  ( ph  ->  ( ( n  e.  Z  |->  ( F `  n ) )  e. 
dom 
~~> r  <->  ( n  e.  Z  |->  ( F `  n ) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) ) )
5048, 49mpbid 202 . . . . 5  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) )
512, 50syl5eqbr 4237 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) )
52 eqid 2435 . . . . . 6  |-  ( k  e.  Z  |->  ( F `
 k ) )  =  ( k  e.  Z  |->  ( F `  k ) )
539, 52fmptd 5884 . . . . 5  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) ) : Z --> CC )
543, 23, 53rlimclim 12328 . . . 4  |-  ( ph  ->  ( ( k  e.  Z  |->  ( F `  k ) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) )  <->  ( k  e.  Z  |->  ( F `  k ) )  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) ) )
5551, 54mpbid 202 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) )  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) )
56 caucvg.4 . . . 4  |-  ( ph  ->  F  e.  V )
573, 52climmpt 12353 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) )  <->  ( k  e.  Z  |->  ( F `
 k ) )  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) ) ) )
5823, 56, 57syl2anc 643 . . 3  |-  ( ph  ->  ( F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) )  <->  ( k  e.  Z  |->  ( F `
 k ) )  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) ) ) )
5955, 58mpbird 224 . 2  |-  ( ph  ->  F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) )
60 climrel 12274 . . 3  |-  Rel  ~~>
6160releldmi 5097 . 2  |-  ( F  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) )  ->  F  e.  dom  ~~>  )
6259, 61syl 16 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    C_ wss 3312   (/)c0 3620   class class class wbr 4204    e. cmpt 4258   dom cdm 4869   ` cfv 5445  (class class class)co 6072   supcsup 7436   CCcc 8977   RRcr 8978   1c1 8980    +oocpnf 9106   RR*cxr 9108    < clt 9109    <_ cle 9110    - cmin 9280   ZZcz 10271   ZZ>=cuz 10477   RR+crp 10601   abscabs 12027    ~~> cli 12266    ~~> r crli 12267
This theorem is referenced by:  caucvgb  12461  cvgcmpce  12585  ulmcau  20299  dchrisumlem3  21173  rrncmslem  26478
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057  ax-addf 9058  ax-mulf 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-er 6896  df-pm 7012  df-en 7101  df-dom 7102  df-sdom 7103  df-sup 7437  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-n0 10211  df-z 10272  df-uz 10478  df-rp 10602  df-ico 10911  df-fl 11190  df-seq 11312  df-exp 11371  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-limsup 12253  df-clim 12270  df-rlim 12271
  Copyright terms: Public domain W3C validator