MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvg Unicode version

Theorem caucvg 12116
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Proof shortened by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvg.1  |-  Z  =  ( ZZ>= `  M )
caucvg.2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
caucvg.3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
caucvg.4  |-  ( ph  ->  F  e.  V )
Assertion
Ref Expression
caucvg  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    j, k, x, F    j, M, k, x    ph, j, k, x   
j, Z, k, x
Allowed substitution hints:    V( x, j, k)

Proof of Theorem caucvg
StepHypRef Expression
1 fveq2 5458 . . . . . 6  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
21cbvmptv 4085 . . . . 5  |-  ( k  e.  Z  |->  ( F `
 k ) )  =  ( n  e.  Z  |->  ( F `  n ) )
3 caucvg.1 . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
4 uzssz 10214 . . . . . . . . . 10  |-  ( ZZ>= `  M )  C_  ZZ
53, 4eqsstri 3183 . . . . . . . . 9  |-  Z  C_  ZZ
6 zssre 9998 . . . . . . . . 9  |-  ZZ  C_  RR
75, 6sstri 3163 . . . . . . . 8  |-  Z  C_  RR
87a1i 12 . . . . . . 7  |-  ( ph  ->  Z  C_  RR )
9 caucvg.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
102eqcomi 2262 . . . . . . . 8  |-  ( n  e.  Z  |->  ( F `
 n ) )  =  ( k  e.  Z  |->  ( F `  k ) )
119, 10fmptd 5618 . . . . . . 7  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) ) : Z --> CC )
12 1rp 10325 . . . . . . . . . . 11  |-  1  e.  RR+
13 ne0i 3436 . . . . . . . . . . 11  |-  ( 1  e.  RR+  ->  RR+  =/=  (/) )
1412, 13ax-mp 10 . . . . . . . . . 10  |-  RR+  =/=  (/)
15 caucvg.3 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
16 r19.2z 3518 . . . . . . . . . 10  |-  ( (
RR+  =/=  (/)  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
1714, 15, 16sylancr 647 . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
18 eluzel2 10202 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1918, 3eleq2s 2350 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  M  e.  ZZ )
2019a1d 24 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  M  e.  ZZ ) )
2120rexlimiv 2636 . . . . . . . . . 10  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  ->  M  e.  ZZ )
2221rexlimivw 2638 . . . . . . . . 9  |-  ( E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  M  e.  ZZ )
2317, 22syl 17 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
243uzsup 10933 . . . . . . . 8  |-  ( M  e.  ZZ  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
2523, 24syl 17 . . . . . . 7  |-  ( ph  ->  sup ( Z ,  RR* ,  <  )  = 
+oo )
265sseli 3151 . . . . . . . . . . . . . . . 16  |-  ( j  e.  Z  ->  j  e.  ZZ )
275sseli 3151 . . . . . . . . . . . . . . . 16  |-  ( k  e.  Z  ->  k  e.  ZZ )
28 eluz 10208 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
2926, 27, 28syl2an 465 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
3029biimprd 216 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( j  <_  k  ->  k  e.  ( ZZ>= `  j ) ) )
31 fveq2 5458 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
32 eqid 2258 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  Z  |->  ( F `
 n ) )  =  ( n  e.  Z  |->  ( F `  n ) )
33 fvex 5472 . . . . . . . . . . . . . . . . . . 19  |-  ( F `
 n )  e. 
_V
3431, 32, 33fvmpt3i 5539 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  Z  ->  (
( n  e.  Z  |->  ( F `  n
) ) `  k
)  =  ( F `
 k ) )
35 fveq2 5458 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  ( F `  n )  =  ( F `  j ) )
3635, 32, 33fvmpt3i 5539 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  Z  ->  (
( n  e.  Z  |->  ( F `  n
) ) `  j
)  =  ( F `
 j ) )
3734, 36oveqan12rd 5812 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) )  =  ( ( F `  k )  -  ( F `  j )
) )
3837fveq2d 5462 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  =  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
3938breq1d 4007 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x  <->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
4039biimprd 216 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  -> 
( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x ) )
4130, 40imim12d 70 . . . . . . . . . . . . 13  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( k  e.  ( ZZ>= `  j )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( j  <_ 
k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) )
4241ex 425 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  (
k  e.  Z  -> 
( ( k  e.  ( ZZ>= `  j )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( j  <_ 
k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) ) )
4342com23 74 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  -> 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( k  e.  Z  ->  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) ) )
4443ralimdv2 2598 . . . . . . . . . 10  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  A. k  e.  Z  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) )
4544reximia 2623 . . . . . . . . 9  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  ->  E. j  e.  Z  A. k  e.  Z  ( j  <_  k  ->  ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x ) )
4645ralimi 2593 . . . . . . . 8  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  Z  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) )
4715, 46syl 17 . . . . . . 7  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  Z  (
j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `  n
) ) `  k
)  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x
) )
488, 11, 25, 47caucvgr 12113 . . . . . 6  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) )  e.  dom  ~~> r  )
4911, 25rlimdm 11990 . . . . . 6  |-  ( ph  ->  ( ( n  e.  Z  |->  ( F `  n ) )  e. 
dom 
~~> r  <->  ( n  e.  Z  |->  ( F `  n ) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) ) )
5048, 49mpbid 203 . . . . 5  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) )
512, 50syl5eqbr 4030 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) )
52 eqid 2258 . . . . . 6  |-  ( k  e.  Z  |->  ( F `
 k ) )  =  ( k  e.  Z  |->  ( F `  k ) )
539, 52fmptd 5618 . . . . 5  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) ) : Z --> CC )
543, 23, 53rlimclim 11985 . . . 4  |-  ( ph  ->  ( ( k  e.  Z  |->  ( F `  k ) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) )  <->  ( k  e.  Z  |->  ( F `  k ) )  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) ) )
5551, 54mpbid 203 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) )  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) )
56 caucvg.4 . . . 4  |-  ( ph  ->  F  e.  V )
573, 52climmpt 12010 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) )  <->  ( k  e.  Z  |->  ( F `
 k ) )  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) ) ) )
5823, 56, 57syl2anc 645 . . 3  |-  ( ph  ->  ( F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) )  <->  ( k  e.  Z  |->  ( F `
 k ) )  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) ) ) )
5955, 58mpbird 225 . 2  |-  ( ph  ->  F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) )
60 climrel 11931 . . 3  |-  Rel  ~~>
6160releldmi 4903 . 2  |-  ( F  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) )  ->  F  e.  dom  ~~>  )
6259, 61syl 17 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519    C_ wss 3127   (/)c0 3430   class class class wbr 3997    e. cmpt 4051   dom cdm 4661   ` cfv 4673  (class class class)co 5792   supcsup 7161   CCcc 8703   RRcr 8704   1c1 8706    +oocpnf 8832   RR*cxr 8834    < clt 8835    <_ cle 8836    - cmin 9005   ZZcz 9991   ZZ>=cuz 10197   RR+crp 10321   abscabs 11684    ~~> cli 11923    ~~> r crli 11924
This theorem is referenced by:  caucvgb  12117  cvgcmpce  12241  ulmcau  19734  dchrisumlem3  20602  rrncmslem  25923
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-pm 6743  df-en 6832  df-dom 6833  df-sdom 6834  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-rp 10322  df-ico 10628  df-fl 10891  df-seq 11013  df-exp 11071  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-limsup 11910  df-clim 11927  df-rlim 11928
  Copyright terms: Public domain W3C validator