MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgr Unicode version

Theorem caucvgr 12113
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1  |-  ( ph  ->  A  C_  RR )
caucvgr.2  |-  ( ph  ->  F : A --> CC )
caucvgr.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
caucvgr.4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
Assertion
Ref Expression
caucvgr  |-  ( ph  ->  F  e.  dom  ~~> r  )
Distinct variable groups:    j, k, x, A    j, F, k, x    ph, j, k, x

Proof of Theorem caucvgr
StepHypRef Expression
1 caucvgr.2 . . . . 5  |-  ( ph  ->  F : A --> CC )
21feqmptd 5509 . . . 4  |-  ( ph  ->  F  =  ( n  e.  A  |->  ( F `
 n ) ) )
3 ffvelrn 5597 . . . . . . 7  |-  ( ( F : A --> CC  /\  n  e.  A )  ->  ( F `  n
)  e.  CC )
41, 3sylan 459 . . . . . 6  |-  ( (
ph  /\  n  e.  A )  ->  ( F `  n )  e.  CC )
54replimd 11647 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  ( F `  n )  =  ( ( Re
`  ( F `  n ) )  +  ( _i  x.  (
Im `  ( F `  n ) ) ) ) )
65mpteq2dva 4080 . . . 4  |-  ( ph  ->  ( n  e.  A  |->  ( F `  n
) )  =  ( n  e.  A  |->  ( ( Re `  ( F `  n )
)  +  ( _i  x.  ( Im `  ( F `  n ) ) ) ) ) )
72, 6eqtrd 2290 . . 3  |-  ( ph  ->  F  =  ( n  e.  A  |->  ( ( Re `  ( F `
 n ) )  +  ( _i  x.  ( Im `  ( F `
 n ) ) ) ) ) )
8 fvex 5472 . . . . 5  |-  ( Re
`  ( F `  n ) )  e. 
_V
98a1i 12 . . . 4  |-  ( (
ph  /\  n  e.  A )  ->  (
Re `  ( F `  n ) )  e. 
_V )
10 ovex 5817 . . . . 5  |-  ( _i  x.  ( Im `  ( F `  n ) ) )  e.  _V
1110a1i 12 . . . 4  |-  ( (
ph  /\  n  e.  A )  ->  (
_i  x.  ( Im `  ( F `  n
) ) )  e. 
_V )
12 caucvgr.1 . . . . 5  |-  ( ph  ->  A  C_  RR )
13 caucvgr.3 . . . . 5  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
14 caucvgr.4 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
15 ref 11562 . . . . 5  |-  Re : CC
--> RR
16 resub 11577 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( Re `  (
( F `  k
)  -  ( F `
 j ) ) )  =  ( ( Re `  ( F `
 k ) )  -  ( Re `  ( F `  j ) ) ) )
1716fveq2d 5462 . . . . . 6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Re `  ( ( F `  k )  -  ( F `  j ) ) ) )  =  ( abs `  ( ( Re `  ( F `  k ) )  -  ( Re
`  ( F `  j ) ) ) ) )
18 subcl 9019 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( ( F `  k )  -  ( F `  j )
)  e.  CC )
19 absrele 11758 . . . . . . 7  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( Re `  ( ( F `  k )  -  ( F `  j )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
2018, 19syl 17 . . . . . 6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Re `  ( ( F `  k )  -  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
2117, 20eqbrtrrd 4019 . . . . 5  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( Re `  ( F `  k )
)  -  ( Re
`  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
2212, 1, 13, 14, 15, 21caucvgrlem2 12112 . . . 4  |-  ( ph  ->  ( n  e.  A  |->  ( Re `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( Re  o.  F ) ) )
23 ax-icn 8764 . . . . . . 7  |-  _i  e.  CC
2423elexi 2772 . . . . . 6  |-  _i  e.  _V
2524a1i 12 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  _i  e.  _V )
26 fvex 5472 . . . . . 6  |-  ( Im
`  ( F `  n ) )  e. 
_V
2726a1i 12 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  (
Im `  ( F `  n ) )  e. 
_V )
28 rlimconst 11983 . . . . . 6  |-  ( ( A  C_  RR  /\  _i  e.  CC )  ->  (
n  e.  A  |->  _i )  ~~> r  _i )
2912, 23, 28sylancl 646 . . . . 5  |-  ( ph  ->  ( n  e.  A  |->  _i )  ~~> r  _i )
30 imf 11563 . . . . . 6  |-  Im : CC
--> RR
31 imsub 11585 . . . . . . . 8  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( Im `  (
( F `  k
)  -  ( F `
 j ) ) )  =  ( ( Im `  ( F `
 k ) )  -  ( Im `  ( F `  j ) ) ) )
3231fveq2d 5462 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Im `  ( ( F `  k )  -  ( F `  j ) ) ) )  =  ( abs `  ( ( Im `  ( F `  k ) )  -  ( Im
`  ( F `  j ) ) ) ) )
33 absimle 11759 . . . . . . . 8  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( Im `  ( ( F `  k )  -  ( F `  j )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
3418, 33syl 17 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Im `  ( ( F `  k )  -  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
3532, 34eqbrtrrd 4019 . . . . . 6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( Im `  ( F `  k )
)  -  ( Im
`  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
3612, 1, 13, 14, 30, 35caucvgrlem2 12112 . . . . 5  |-  ( ph  ->  ( n  e.  A  |->  ( Im `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( Im  o.  F ) ) )
3725, 27, 29, 36rlimmul 12083 . . . 4  |-  ( ph  ->  ( n  e.  A  |->  ( _i  x.  (
Im `  ( F `  n ) ) ) )  ~~> r  ( _i  x.  (  ~~> r  `  ( Im  o.  F
) ) ) )
389, 11, 22, 37rlimadd 12081 . . 3  |-  ( ph  ->  ( n  e.  A  |->  ( ( Re `  ( F `  n ) )  +  ( _i  x.  ( Im `  ( F `  n ) ) ) ) )  ~~> r  ( (  ~~> r  `  ( Re  o.  F
) )  +  ( _i  x.  (  ~~> r  `  ( Im  o.  F
) ) ) ) )
397, 38eqbrtrd 4017 . 2  |-  ( ph  ->  F  ~~> r  ( (  ~~> r  `  ( Re  o.  F ) )  +  ( _i  x.  ( 
~~> r  `  ( Im  o.  F ) ) ) ) )
40 rlimrel 11932 . . 3  |-  Rel  ~~> r
4140releldmi 4903 . 2  |-  ( F  ~~> r  ( (  ~~> r  `  ( Re  o.  F
) )  +  ( _i  x.  (  ~~> r  `  ( Im  o.  F
) ) ) )  ->  F  e.  dom  ~~> r  )
4239, 41syl 17 1  |-  ( ph  ->  F  e.  dom  ~~> r  )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2518   E.wrex 2519   _Vcvv 2763    C_ wss 3127   class class class wbr 3997    e. cmpt 4051   dom cdm 4661    o. ccom 4665   -->wf 4669   ` cfv 4673  (class class class)co 5792   supcsup 7161   CCcc 8703   RRcr 8704   _ici 8707    + caddc 8708    x. cmul 8710    +oocpnf 8832   RR*cxr 8834    < clt 8835    <_ cle 8836    - cmin 9005   RR+crp 10321   Recre 11547   Imcim 11548   abscabs 11684    ~~> r crli 11924
This theorem is referenced by:  caucvg  12116  dvfsumrlim  19340
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-er 6628  df-pm 6743  df-en 6832  df-dom 6833  df-sdom 6834  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-rp 10322  df-ico 10628  df-seq 11013  df-exp 11071  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-limsup 11910  df-rlim 11928
  Copyright terms: Public domain W3C validator