MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgr Unicode version

Theorem caucvgr 12396
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1  |-  ( ph  ->  A  C_  RR )
caucvgr.2  |-  ( ph  ->  F : A --> CC )
caucvgr.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
caucvgr.4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
Assertion
Ref Expression
caucvgr  |-  ( ph  ->  F  e.  dom  ~~> r  )
Distinct variable groups:    j, k, x, A    j, F, k, x    ph, j, k, x

Proof of Theorem caucvgr
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 caucvgr.2 . . . . 5  |-  ( ph  ->  F : A --> CC )
21feqmptd 5718 . . . 4  |-  ( ph  ->  F  =  ( n  e.  A  |->  ( F `
 n ) ) )
31ffvelrnda 5809 . . . . . 6  |-  ( (
ph  /\  n  e.  A )  ->  ( F `  n )  e.  CC )
43replimd 11929 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  ( F `  n )  =  ( ( Re
`  ( F `  n ) )  +  ( _i  x.  (
Im `  ( F `  n ) ) ) ) )
54mpteq2dva 4236 . . . 4  |-  ( ph  ->  ( n  e.  A  |->  ( F `  n
) )  =  ( n  e.  A  |->  ( ( Re `  ( F `  n )
)  +  ( _i  x.  ( Im `  ( F `  n ) ) ) ) ) )
62, 5eqtrd 2419 . . 3  |-  ( ph  ->  F  =  ( n  e.  A  |->  ( ( Re `  ( F `
 n ) )  +  ( _i  x.  ( Im `  ( F `
 n ) ) ) ) ) )
7 fvex 5682 . . . . 5  |-  ( Re
`  ( F `  n ) )  e. 
_V
87a1i 11 . . . 4  |-  ( (
ph  /\  n  e.  A )  ->  (
Re `  ( F `  n ) )  e. 
_V )
9 ovex 6045 . . . . 5  |-  ( _i  x.  ( Im `  ( F `  n ) ) )  e.  _V
109a1i 11 . . . 4  |-  ( (
ph  /\  n  e.  A )  ->  (
_i  x.  ( Im `  ( F `  n
) ) )  e. 
_V )
11 caucvgr.1 . . . . 5  |-  ( ph  ->  A  C_  RR )
12 caucvgr.3 . . . . 5  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
13 caucvgr.4 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
14 ref 11844 . . . . 5  |-  Re : CC
--> RR
15 resub 11859 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( Re `  (
( F `  k
)  -  ( F `
 j ) ) )  =  ( ( Re `  ( F `
 k ) )  -  ( Re `  ( F `  j ) ) ) )
1615fveq2d 5672 . . . . . 6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Re `  ( ( F `  k )  -  ( F `  j ) ) ) )  =  ( abs `  ( ( Re `  ( F `  k ) )  -  ( Re
`  ( F `  j ) ) ) ) )
17 subcl 9237 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( ( F `  k )  -  ( F `  j )
)  e.  CC )
18 absrele 12040 . . . . . . 7  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( Re `  ( ( F `  k )  -  ( F `  j )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
1917, 18syl 16 . . . . . 6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Re `  ( ( F `  k )  -  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
2016, 19eqbrtrrd 4175 . . . . 5  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( Re `  ( F `  k )
)  -  ( Re
`  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
2111, 1, 12, 13, 14, 20caucvgrlem2 12395 . . . 4  |-  ( ph  ->  ( n  e.  A  |->  ( Re `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( Re  o.  F ) ) )
22 ax-icn 8982 . . . . . . 7  |-  _i  e.  CC
2322elexi 2908 . . . . . 6  |-  _i  e.  _V
2423a1i 11 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  _i  e.  _V )
25 fvex 5682 . . . . . 6  |-  ( Im
`  ( F `  n ) )  e. 
_V
2625a1i 11 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  (
Im `  ( F `  n ) )  e. 
_V )
27 rlimconst 12265 . . . . . 6  |-  ( ( A  C_  RR  /\  _i  e.  CC )  ->  (
n  e.  A  |->  _i )  ~~> r  _i )
2811, 22, 27sylancl 644 . . . . 5  |-  ( ph  ->  ( n  e.  A  |->  _i )  ~~> r  _i )
29 imf 11845 . . . . . 6  |-  Im : CC
--> RR
30 imsub 11867 . . . . . . . 8  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( Im `  (
( F `  k
)  -  ( F `
 j ) ) )  =  ( ( Im `  ( F `
 k ) )  -  ( Im `  ( F `  j ) ) ) )
3130fveq2d 5672 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Im `  ( ( F `  k )  -  ( F `  j ) ) ) )  =  ( abs `  ( ( Im `  ( F `  k ) )  -  ( Im
`  ( F `  j ) ) ) ) )
32 absimle 12041 . . . . . . . 8  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( Im `  ( ( F `  k )  -  ( F `  j )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
3317, 32syl 16 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Im `  ( ( F `  k )  -  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
3431, 33eqbrtrrd 4175 . . . . . 6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( Im `  ( F `  k )
)  -  ( Im
`  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
3511, 1, 12, 13, 29, 34caucvgrlem2 12395 . . . . 5  |-  ( ph  ->  ( n  e.  A  |->  ( Im `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( Im  o.  F ) ) )
3624, 26, 28, 35rlimmul 12365 . . . 4  |-  ( ph  ->  ( n  e.  A  |->  ( _i  x.  (
Im `  ( F `  n ) ) ) )  ~~> r  ( _i  x.  (  ~~> r  `  ( Im  o.  F
) ) ) )
378, 10, 21, 36rlimadd 12363 . . 3  |-  ( ph  ->  ( n  e.  A  |->  ( ( Re `  ( F `  n ) )  +  ( _i  x.  ( Im `  ( F `  n ) ) ) ) )  ~~> r  ( (  ~~> r  `  ( Re  o.  F
) )  +  ( _i  x.  (  ~~> r  `  ( Im  o.  F
) ) ) ) )
386, 37eqbrtrd 4173 . 2  |-  ( ph  ->  F  ~~> r  ( (  ~~> r  `  ( Re  o.  F ) )  +  ( _i  x.  ( 
~~> r  `  ( Im  o.  F ) ) ) ) )
39 rlimrel 12214 . . 3  |-  Rel  ~~> r
4039releldmi 5046 . 2  |-  ( F  ~~> r  ( (  ~~> r  `  ( Re  o.  F
) )  +  ( _i  x.  (  ~~> r  `  ( Im  o.  F
) ) ) )  ->  F  e.  dom  ~~> r  )
4138, 40syl 16 1  |-  ( ph  ->  F  e.  dom  ~~> r  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   _Vcvv 2899    C_ wss 3263   class class class wbr 4153    e. cmpt 4207   dom cdm 4818    o. ccom 4822   -->wf 5390   ` cfv 5394  (class class class)co 6020   supcsup 7380   CCcc 8921   RRcr 8922   _ici 8925    + caddc 8926    x. cmul 8928    +oocpnf 9050   RR*cxr 9052    < clt 9053    <_ cle 9054    - cmin 9223   RR+crp 10544   Recre 11829   Imcim 11830   abscabs 11966    ~~> r crli 12206
This theorem is referenced by:  caucvg  12399  dvfsumrlim  19782
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-pm 6957  df-en 7046  df-dom 7047  df-sdom 7048  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-ico 10854  df-seq 11251  df-exp 11310  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-limsup 12192  df-rlim 12210
  Copyright terms: Public domain W3C validator