MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgr Unicode version

Theorem caucvgr 12148
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1  |-  ( ph  ->  A  C_  RR )
caucvgr.2  |-  ( ph  ->  F : A --> CC )
caucvgr.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
caucvgr.4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
Assertion
Ref Expression
caucvgr  |-  ( ph  ->  F  e.  dom  ~~> r  )
Distinct variable groups:    j, k, x, A    j, F, k, x    ph, j, k, x

Proof of Theorem caucvgr
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 caucvgr.2 . . . . 5  |-  ( ph  ->  F : A --> CC )
21feqmptd 5575 . . . 4  |-  ( ph  ->  F  =  ( n  e.  A  |->  ( F `
 n ) ) )
3 ffvelrn 5663 . . . . . . 7  |-  ( ( F : A --> CC  /\  n  e.  A )  ->  ( F `  n
)  e.  CC )
41, 3sylan 457 . . . . . 6  |-  ( (
ph  /\  n  e.  A )  ->  ( F `  n )  e.  CC )
54replimd 11682 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  ( F `  n )  =  ( ( Re
`  ( F `  n ) )  +  ( _i  x.  (
Im `  ( F `  n ) ) ) ) )
65mpteq2dva 4106 . . . 4  |-  ( ph  ->  ( n  e.  A  |->  ( F `  n
) )  =  ( n  e.  A  |->  ( ( Re `  ( F `  n )
)  +  ( _i  x.  ( Im `  ( F `  n ) ) ) ) ) )
72, 6eqtrd 2315 . . 3  |-  ( ph  ->  F  =  ( n  e.  A  |->  ( ( Re `  ( F `
 n ) )  +  ( _i  x.  ( Im `  ( F `
 n ) ) ) ) ) )
8 fvex 5539 . . . . 5  |-  ( Re
`  ( F `  n ) )  e. 
_V
98a1i 10 . . . 4  |-  ( (
ph  /\  n  e.  A )  ->  (
Re `  ( F `  n ) )  e. 
_V )
10 ovex 5883 . . . . 5  |-  ( _i  x.  ( Im `  ( F `  n ) ) )  e.  _V
1110a1i 10 . . . 4  |-  ( (
ph  /\  n  e.  A )  ->  (
_i  x.  ( Im `  ( F `  n
) ) )  e. 
_V )
12 caucvgr.1 . . . . 5  |-  ( ph  ->  A  C_  RR )
13 caucvgr.3 . . . . 5  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
14 caucvgr.4 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
15 ref 11597 . . . . 5  |-  Re : CC
--> RR
16 resub 11612 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( Re `  (
( F `  k
)  -  ( F `
 j ) ) )  =  ( ( Re `  ( F `
 k ) )  -  ( Re `  ( F `  j ) ) ) )
1716fveq2d 5529 . . . . . 6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Re `  ( ( F `  k )  -  ( F `  j ) ) ) )  =  ( abs `  ( ( Re `  ( F `  k ) )  -  ( Re
`  ( F `  j ) ) ) ) )
18 subcl 9051 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( ( F `  k )  -  ( F `  j )
)  e.  CC )
19 absrele 11793 . . . . . . 7  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( Re `  ( ( F `  k )  -  ( F `  j )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
2018, 19syl 15 . . . . . 6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Re `  ( ( F `  k )  -  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
2117, 20eqbrtrrd 4045 . . . . 5  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( Re `  ( F `  k )
)  -  ( Re
`  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
2212, 1, 13, 14, 15, 21caucvgrlem2 12147 . . . 4  |-  ( ph  ->  ( n  e.  A  |->  ( Re `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( Re  o.  F ) ) )
23 ax-icn 8796 . . . . . . 7  |-  _i  e.  CC
2423elexi 2797 . . . . . 6  |-  _i  e.  _V
2524a1i 10 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  _i  e.  _V )
26 fvex 5539 . . . . . 6  |-  ( Im
`  ( F `  n ) )  e. 
_V
2726a1i 10 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  (
Im `  ( F `  n ) )  e. 
_V )
28 rlimconst 12018 . . . . . 6  |-  ( ( A  C_  RR  /\  _i  e.  CC )  ->  (
n  e.  A  |->  _i )  ~~> r  _i )
2912, 23, 28sylancl 643 . . . . 5  |-  ( ph  ->  ( n  e.  A  |->  _i )  ~~> r  _i )
30 imf 11598 . . . . . 6  |-  Im : CC
--> RR
31 imsub 11620 . . . . . . . 8  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( Im `  (
( F `  k
)  -  ( F `
 j ) ) )  =  ( ( Im `  ( F `
 k ) )  -  ( Im `  ( F `  j ) ) ) )
3231fveq2d 5529 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Im `  ( ( F `  k )  -  ( F `  j ) ) ) )  =  ( abs `  ( ( Im `  ( F `  k ) )  -  ( Im
`  ( F `  j ) ) ) ) )
33 absimle 11794 . . . . . . . 8  |-  ( ( ( F `  k
)  -  ( F `
 j ) )  e.  CC  ->  ( abs `  ( Im `  ( ( F `  k )  -  ( F `  j )
) ) )  <_ 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
3418, 33syl 15 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
Im `  ( ( F `  k )  -  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
3532, 34eqbrtrrd 4045 . . . . . 6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( Im `  ( F `  k )
)  -  ( Im
`  ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
3612, 1, 13, 14, 30, 35caucvgrlem2 12147 . . . . 5  |-  ( ph  ->  ( n  e.  A  |->  ( Im `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( Im  o.  F ) ) )
3725, 27, 29, 36rlimmul 12118 . . . 4  |-  ( ph  ->  ( n  e.  A  |->  ( _i  x.  (
Im `  ( F `  n ) ) ) )  ~~> r  ( _i  x.  (  ~~> r  `  ( Im  o.  F
) ) ) )
389, 11, 22, 37rlimadd 12116 . . 3  |-  ( ph  ->  ( n  e.  A  |->  ( ( Re `  ( F `  n ) )  +  ( _i  x.  ( Im `  ( F `  n ) ) ) ) )  ~~> r  ( (  ~~> r  `  ( Re  o.  F
) )  +  ( _i  x.  (  ~~> r  `  ( Im  o.  F
) ) ) ) )
397, 38eqbrtrd 4043 . 2  |-  ( ph  ->  F  ~~> r  ( (  ~~> r  `  ( Re  o.  F ) )  +  ( _i  x.  ( 
~~> r  `  ( Im  o.  F ) ) ) ) )
40 rlimrel 11967 . . 3  |-  Rel  ~~> r
4140releldmi 4915 . 2  |-  ( F  ~~> r  ( (  ~~> r  `  ( Re  o.  F
) )  +  ( _i  x.  (  ~~> r  `  ( Im  o.  F
) ) ) )  ->  F  e.  dom  ~~> r  )
4239, 41syl 15 1  |-  ( ph  ->  F  e.  dom  ~~> r  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   dom cdm 4689    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   _ici 8739    + caddc 8740    x. cmul 8742    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   RR+crp 10354   Recre 11582   Imcim 11583   abscabs 11719    ~~> r crli 11959
This theorem is referenced by:  caucvg  12151  dvfsumrlim  19378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-rlim 11963
  Copyright terms: Public domain W3C validator