MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem2 Structured version   Unicode version

Theorem caucvgrlem2 12460
Description: Lemma for caucvgr 12461. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1  |-  ( ph  ->  A  C_  RR )
caucvgr.2  |-  ( ph  ->  F : A --> CC )
caucvgr.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
caucvgr.4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
caucvgrlem2.5  |-  H : CC
--> RR
caucvgrlem2.6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
Assertion
Ref Expression
caucvgrlem2  |-  ( ph  ->  ( n  e.  A  |->  ( H `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( H  o.  F ) ) )
Distinct variable groups:    j, k, n, x, A    j, F, k, n, x    j, H, k, n, x    ph, j,
k, n, x

Proof of Theorem caucvgrlem2
StepHypRef Expression
1 caucvgrlem2.5 . . 3  |-  H : CC
--> RR
2 caucvgr.2 . . 3  |-  ( ph  ->  F : A --> CC )
3 fcompt 5896 . . 3  |-  ( ( H : CC --> RR  /\  F : A --> CC )  ->  ( H  o.  F )  =  ( n  e.  A  |->  ( H `  ( F `
 n ) ) ) )
41, 2, 3sylancr 645 . 2  |-  ( ph  ->  ( H  o.  F
)  =  ( n  e.  A  |->  ( H `
 ( F `  n ) ) ) )
5 caucvgr.1 . . . . 5  |-  ( ph  ->  A  C_  RR )
6 fco 5592 . . . . . 6  |-  ( ( H : CC --> RR  /\  F : A --> CC )  ->  ( H  o.  F ) : A --> RR )
71, 2, 6sylancr 645 . . . . 5  |-  ( ph  ->  ( H  o.  F
) : A --> RR )
8 caucvgr.3 . . . . 5  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
9 caucvgr.4 . . . . . 6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
102ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  F : A
--> CC )
11 simprr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  k  e.  A )
1210, 11ffvelrnd 5863 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( F `  k )  e.  CC )
13 simprl 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  j  e.  A )
1410, 13ffvelrnd 5863 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( F `  j )  e.  CC )
15 caucvgrlem2.6 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
1612, 14, 15syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( abs `  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
171ffvelrni 5861 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  k )  e.  CC  ->  ( H `  ( F `  k ) )  e.  RR )
1812, 17syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( H `  ( F `  k
) )  e.  RR )
191ffvelrni 5861 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  j )  e.  CC  ->  ( H `  ( F `  j ) )  e.  RR )
2014, 19syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( H `  ( F `  j
) )  e.  RR )
2118, 20resubcld 9457 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( H `  ( F `  k ) )  -  ( H `  ( F `
 j ) ) )  e.  RR )
2221recnd 9106 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( H `  ( F `  k ) )  -  ( H `  ( F `
 j ) ) )  e.  CC )
2322abscld 12230 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( abs `  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )  e.  RR )
2412, 14subcld 9403 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( F `  k )  -  ( F `  j ) )  e.  CC )
2524abscld 12230 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR )
26 rpre 10610 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  RR )
2726ad2antlr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  x  e.  RR )
28 lelttr 9157 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  ( abs `  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )  <  x ) )
2923, 25, 27, 28syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( (
( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  ( abs `  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )  <  x ) )
3016, 29mpand 657 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x  ->  ( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <  x ) )
31 fvco3 5792 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> CC  /\  k  e.  A )  ->  ( ( H  o.  F ) `  k
)  =  ( H `
 ( F `  k ) ) )
3210, 11, 31syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( H  o.  F ) `  k )  =  ( H `  ( F `
 k ) ) )
33 fvco3 5792 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> CC  /\  j  e.  A )  ->  ( ( H  o.  F ) `  j
)  =  ( H `
 ( F `  j ) ) )
3410, 13, 33syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( H  o.  F ) `  j )  =  ( H `  ( F `
 j ) ) )
3532, 34oveq12d 6091 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( (
( H  o.  F
) `  k )  -  ( ( H  o.  F ) `  j ) )  =  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )
3635fveq2d 5724 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( abs `  ( ( ( H  o.  F ) `  k )  -  (
( H  o.  F
) `  j )
) )  =  ( abs `  ( ( H `  ( F `
 k ) )  -  ( H `  ( F `  j ) ) ) ) )
3736breq1d 4214 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( abs `  ( ( ( H  o.  F ) `
 k )  -  ( ( H  o.  F ) `  j
) ) )  < 
x  <->  ( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <  x ) )
3830, 37sylibrd 226 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) )
3938imim2d 50 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( j  <_  k  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) ) )
4039anassrs 630 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  A )  /\  k  e.  A
)  ->  ( (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( j  <_  k  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) ) )
4140ralimdva 2776 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  A )  ->  ( A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) ) )
4241reximdva 2810 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) ) )
4342ralimdva 2776 . . . . . 6  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( ( H  o.  F
) `  k )  -  ( ( H  o.  F ) `  j ) ) )  <  x ) ) )
449, 43mpd 15 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( ( H  o.  F
) `  k )  -  ( ( H  o.  F ) `  j ) ) )  <  x ) )
455, 7, 8, 44caurcvgr 12459 . . . 4  |-  ( ph  ->  ( H  o.  F
)  ~~> r  ( limsup `  ( H  o.  F
) ) )
46 rlimrel 12279 . . . . 5  |-  Rel  ~~> r
4746releldmi 5098 . . . 4  |-  ( ( H  o.  F )  ~~> r  ( limsup `  ( H  o.  F )
)  ->  ( H  o.  F )  e.  dom  ~~> r  )
4845, 47syl 16 . . 3  |-  ( ph  ->  ( H  o.  F
)  e.  dom  ~~> r  )
49 ax-resscn 9039 . . . . 5  |-  RR  C_  CC
50 fss 5591 . . . . 5  |-  ( ( ( H  o.  F
) : A --> RR  /\  RR  C_  CC )  -> 
( H  o.  F
) : A --> CC )
517, 49, 50sylancl 644 . . . 4  |-  ( ph  ->  ( H  o.  F
) : A --> CC )
5251, 8rlimdm 12337 . . 3  |-  ( ph  ->  ( ( H  o.  F )  e.  dom  ~~> r  <-> 
( H  o.  F
)  ~~> r  (  ~~> r  `  ( H  o.  F
) ) ) )
5348, 52mpbid 202 . 2  |-  ( ph  ->  ( H  o.  F
)  ~~> r  (  ~~> r  `  ( H  o.  F
) ) )
544, 53eqbrtrrd 4226 1  |-  ( ph  ->  ( n  e.  A  |->  ( H `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( H  o.  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   class class class wbr 4204    e. cmpt 4258   dom cdm 4870    o. ccom 4874   -->wf 5442   ` cfv 5446  (class class class)co 6073   supcsup 7437   CCcc 8980   RRcr 8981    +oocpnf 9109   RR*cxr 9111    < clt 9112    <_ cle 9113    - cmin 9283   RR+crp 10604   abscabs 12031   limsupclsp 12256    ~~> r crli 12271
This theorem is referenced by:  caucvgr  12461
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-ico 10914  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-rlim 12275
  Copyright terms: Public domain W3C validator