MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg Unicode version

Theorem caurcvg 12145
Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that  F is a Cauchy sequence. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caurcvg.1  |-  Z  =  ( ZZ>= `  M )
caurcvg.3  |-  ( ph  ->  F : Z --> RR )
caurcvg.4  |-  ( ph  ->  A. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
)
Assertion
Ref Expression
caurcvg  |-  ( ph  ->  F  ~~>  ( limsup `  F
) )
Distinct variable groups:    k, m, x, F    m, M, x    ph, k, m, x    k, Z, m, x
Allowed substitution group:    M( k)

Proof of Theorem caurcvg
StepHypRef Expression
1 caurcvg.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
2 uzssz 10244 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
31, 2eqsstri 3211 . . . . 5  |-  Z  C_  ZZ
4 zssre 10028 . . . . 5  |-  ZZ  C_  RR
53, 4sstri 3191 . . . 4  |-  Z  C_  RR
65a1i 12 . . 3  |-  ( ph  ->  Z  C_  RR )
7 caurcvg.3 . . 3  |-  ( ph  ->  F : Z --> RR )
8 1rp 10355 . . . . . 6  |-  1  e.  RR+
9 ne0i 3464 . . . . . 6  |-  ( 1  e.  RR+  ->  RR+  =/=  (/) )
108, 9ax-mp 10 . . . . 5  |-  RR+  =/=  (/)
11 caurcvg.4 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
)
12 r19.2z 3546 . . . . 5  |-  ( (
RR+  =/=  (/)  /\  A. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m )
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x )  ->  E. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
)
1310, 11, 12sylancr 646 . . . 4  |-  ( ph  ->  E. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
)
14 eluzel2 10232 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1514, 1eleq2s 2378 . . . . . . . 8  |-  ( m  e.  Z  ->  M  e.  ZZ )
161uzsup 10963 . . . . . . . 8  |-  ( M  e.  ZZ  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
1715, 16syl 17 . . . . . . 7  |-  ( m  e.  Z  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
1817a1d 24 . . . . . 6  |-  ( m  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  m ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x  ->  sup ( Z ,  RR* ,  <  )  =  +oo ) )
1918rexlimiv 2664 . . . . 5  |-  ( E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x  ->  sup ( Z ,  RR* ,  <  )  = 
+oo )
2019rexlimivw 2666 . . . 4  |-  ( E. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m )
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
2113, 20syl 17 . . 3  |-  ( ph  ->  sup ( Z ,  RR* ,  <  )  = 
+oo )
223sseli 3179 . . . . . . . . . . . 12  |-  ( m  e.  Z  ->  m  e.  ZZ )
233sseli 3179 . . . . . . . . . . . 12  |-  ( k  e.  Z  ->  k  e.  ZZ )
24 eluz 10238 . . . . . . . . . . . 12  |-  ( ( m  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  m )  <->  m  <_  k ) )
2522, 23, 24syl2an 465 . . . . . . . . . . 11  |-  ( ( m  e.  Z  /\  k  e.  Z )  ->  ( k  e.  (
ZZ>= `  m )  <->  m  <_  k ) )
2625biimprd 216 . . . . . . . . . 10  |-  ( ( m  e.  Z  /\  k  e.  Z )  ->  ( m  <_  k  ->  k  e.  ( ZZ>= `  m ) ) )
2726expimpd 588 . . . . . . . . 9  |-  ( m  e.  Z  ->  (
( k  e.  Z  /\  m  <_  k )  ->  k  e.  (
ZZ>= `  m ) ) )
2827imim1d 71 . . . . . . . 8  |-  ( m  e.  Z  ->  (
( k  e.  (
ZZ>= `  m )  -> 
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x )  ->  ( ( k  e.  Z  /\  m  <_  k )  ->  ( abs `  ( ( F `
 k )  -  ( F `  m ) ) )  <  x
) ) )
2928exp4a 591 . . . . . . 7  |-  ( m  e.  Z  ->  (
( k  e.  (
ZZ>= `  m )  -> 
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x )  ->  ( k  e.  Z  ->  ( m  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
) ) ) )
3029ralimdv2 2626 . . . . . 6  |-  ( m  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  m ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x  ->  A. k  e.  Z  ( m  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
) ) )
3130reximia 2651 . . . . 5  |-  ( E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x  ->  E. m  e.  Z  A. k  e.  Z  ( m  <_  k  -> 
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x ) )
3231ralimi 2621 . . . 4  |-  ( A. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m )
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x  ->  A. x  e.  RR+  E. m  e.  Z  A. k  e.  Z  ( m  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
) )
3311, 32syl 17 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. m  e.  Z  A. k  e.  Z  (
m  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) )
346, 7, 21, 33caurcvgr 12142 . 2  |-  ( ph  ->  F  ~~> r  ( limsup `  F ) )
3515a1d 24 . . . . . 6  |-  ( m  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  m ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x  ->  M  e.  ZZ ) )
3635rexlimiv 2664 . . . . 5  |-  ( E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x  ->  M  e.  ZZ )
3736rexlimivw 2666 . . . 4  |-  ( E. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m )
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x  ->  M  e.  ZZ )
3813, 37syl 17 . . 3  |-  ( ph  ->  M  e.  ZZ )
39 ax-resscn 8791 . . . 4  |-  RR  C_  CC
40 fss 5364 . . . 4  |-  ( ( F : Z --> RR  /\  RR  C_  CC )  ->  F : Z --> CC )
417, 39, 40sylancl 645 . . 3  |-  ( ph  ->  F : Z --> CC )
421, 38, 41rlimclim 12016 . 2  |-  ( ph  ->  ( F  ~~> r  (
limsup `  F )  <->  F  ~~>  ( limsup `  F ) ) )
4334, 42mpbid 203 1  |-  ( ph  ->  F  ~~>  ( limsup `  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1625    e. wcel 1687    =/= wne 2449   A.wral 2546   E.wrex 2547    C_ wss 3155   (/)c0 3458   class class class wbr 4026   -->wf 5219   ` cfv 5223  (class class class)co 5821   supcsup 7190   CCcc 8732   RRcr 8733   1c1 8735    +oocpnf 8861   RR*cxr 8863    < clt 8864    <_ cle 8865    - cmin 9034   ZZcz 10021   ZZ>=cuz 10227   RR+crp 10351   abscabs 11715   limsupclsp 11940    ~~> cli 11954    ~~> r crli 11955
This theorem is referenced by:  caurcvg2  12146  mbflimlem  19018
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1638  ax-8 1646  ax-13 1689  ax-14 1691  ax-6 1706  ax-7 1711  ax-11 1718  ax-12 1870  ax-ext 2267  ax-sep 4144  ax-nul 4152  ax-pow 4189  ax-pr 4215  ax-un 4513  ax-cnex 8790  ax-resscn 8791  ax-1cn 8792  ax-icn 8793  ax-addcl 8794  ax-addrcl 8795  ax-mulcl 8796  ax-mulrcl 8797  ax-mulcom 8798  ax-addass 8799  ax-mulass 8800  ax-distr 8801  ax-i2m1 8802  ax-1ne0 8803  ax-1rid 8804  ax-rnegex 8805  ax-rrecex 8806  ax-cnre 8807  ax-pre-lttri 8808  ax-pre-lttrn 8809  ax-pre-ltadd 8810  ax-pre-mulgt0 8811  ax-pre-sup 8812
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1531  df-nf 1534  df-sb 1633  df-eu 2150  df-mo 2151  df-clab 2273  df-cleq 2279  df-clel 2282  df-nfc 2411  df-ne 2451  df-nel 2452  df-ral 2551  df-rex 2552  df-reu 2553  df-rmo 2554  df-rab 2555  df-v 2793  df-sbc 2995  df-csb 3085  df-dif 3158  df-un 3160  df-in 3162  df-ss 3169  df-pss 3171  df-nul 3459  df-if 3569  df-pw 3630  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3831  df-iun 3910  df-br 4027  df-opab 4081  df-mpt 4082  df-tr 4117  df-eprel 4306  df-id 4310  df-po 4315  df-so 4316  df-fr 4353  df-we 4355  df-ord 4396  df-on 4397  df-lim 4398  df-suc 4399  df-om 4658  df-xp 4696  df-rel 4697  df-cnv 4698  df-co 4699  df-dm 4700  df-rn 4701  df-res 4702  df-ima 4703  df-fun 5225  df-fn 5226  df-f 5227  df-f1 5228  df-fo 5229  df-f1o 5230  df-fv 5231  df-ov 5824  df-oprab 5825  df-mpt2 5826  df-2nd 6086  df-iota 6254  df-riota 6301  df-recs 6385  df-rdg 6420  df-er 6657  df-pm 6772  df-en 6861  df-dom 6862  df-sdom 6863  df-sup 7191  df-pnf 8866  df-mnf 8867  df-xr 8868  df-ltxr 8869  df-le 8870  df-sub 9036  df-neg 9037  df-div 9421  df-nn 9744  df-2 9801  df-3 9802  df-n0 9963  df-z 10022  df-uz 10228  df-rp 10352  df-ico 10658  df-fl 10921  df-seq 11043  df-exp 11101  df-cj 11580  df-re 11581  df-im 11582  df-sqr 11716  df-abs 11717  df-limsup 11941  df-clim 11958  df-rlim 11959
  Copyright terms: Public domain W3C validator