MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg Unicode version

Theorem caurcvg 12398
Description: A Cauchy sequence of real numbers converges to its limit supremum. The fourth hypothesis specifies that  F is a Cauchy sequence. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caurcvg.1  |-  Z  =  ( ZZ>= `  M )
caurcvg.3  |-  ( ph  ->  F : Z --> RR )
caurcvg.4  |-  ( ph  ->  A. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
)
Assertion
Ref Expression
caurcvg  |-  ( ph  ->  F  ~~>  ( limsup `  F
) )
Distinct variable groups:    k, m, x, F    m, M, x    ph, k, m, x    k, Z, m, x
Allowed substitution hint:    M( k)

Proof of Theorem caurcvg
StepHypRef Expression
1 caurcvg.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
2 uzssz 10438 . . . . . 6  |-  ( ZZ>= `  M )  C_  ZZ
31, 2eqsstri 3322 . . . . 5  |-  Z  C_  ZZ
4 zssre 10222 . . . . 5  |-  ZZ  C_  RR
53, 4sstri 3301 . . . 4  |-  Z  C_  RR
65a1i 11 . . 3  |-  ( ph  ->  Z  C_  RR )
7 caurcvg.3 . . 3  |-  ( ph  ->  F : Z --> RR )
8 1rp 10549 . . . . . 6  |-  1  e.  RR+
9 ne0i 3578 . . . . . 6  |-  ( 1  e.  RR+  ->  RR+  =/=  (/) )
108, 9ax-mp 8 . . . . 5  |-  RR+  =/=  (/)
11 caurcvg.4 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
)
12 r19.2z 3661 . . . . 5  |-  ( (
RR+  =/=  (/)  /\  A. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m )
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x )  ->  E. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
)
1310, 11, 12sylancr 645 . . . 4  |-  ( ph  ->  E. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
)
14 eluzel2 10426 . . . . . . . . 9  |-  ( m  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1514, 1eleq2s 2480 . . . . . . . 8  |-  ( m  e.  Z  ->  M  e.  ZZ )
161uzsup 11172 . . . . . . . 8  |-  ( M  e.  ZZ  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
1715, 16syl 16 . . . . . . 7  |-  ( m  e.  Z  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
1817a1d 23 . . . . . 6  |-  ( m  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  m ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x  ->  sup ( Z ,  RR* ,  <  )  =  +oo ) )
1918rexlimiv 2768 . . . . 5  |-  ( E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x  ->  sup ( Z ,  RR* ,  <  )  = 
+oo )
2019rexlimivw 2770 . . . 4  |-  ( E. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m )
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
2113, 20syl 16 . . 3  |-  ( ph  ->  sup ( Z ,  RR* ,  <  )  = 
+oo )
223sseli 3288 . . . . . . . . . . . 12  |-  ( m  e.  Z  ->  m  e.  ZZ )
233sseli 3288 . . . . . . . . . . . 12  |-  ( k  e.  Z  ->  k  e.  ZZ )
24 eluz 10432 . . . . . . . . . . . 12  |-  ( ( m  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  m )  <->  m  <_  k ) )
2522, 23, 24syl2an 464 . . . . . . . . . . 11  |-  ( ( m  e.  Z  /\  k  e.  Z )  ->  ( k  e.  (
ZZ>= `  m )  <->  m  <_  k ) )
2625biimprd 215 . . . . . . . . . 10  |-  ( ( m  e.  Z  /\  k  e.  Z )  ->  ( m  <_  k  ->  k  e.  ( ZZ>= `  m ) ) )
2726expimpd 587 . . . . . . . . 9  |-  ( m  e.  Z  ->  (
( k  e.  Z  /\  m  <_  k )  ->  k  e.  (
ZZ>= `  m ) ) )
2827imim1d 71 . . . . . . . 8  |-  ( m  e.  Z  ->  (
( k  e.  (
ZZ>= `  m )  -> 
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x )  ->  ( ( k  e.  Z  /\  m  <_  k )  ->  ( abs `  ( ( F `
 k )  -  ( F `  m ) ) )  <  x
) ) )
2928exp4a 590 . . . . . . 7  |-  ( m  e.  Z  ->  (
( k  e.  (
ZZ>= `  m )  -> 
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x )  ->  ( k  e.  Z  ->  ( m  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
) ) ) )
3029ralimdv2 2730 . . . . . 6  |-  ( m  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  m ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x  ->  A. k  e.  Z  ( m  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
) ) )
3130reximia 2755 . . . . 5  |-  ( E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x  ->  E. m  e.  Z  A. k  e.  Z  ( m  <_  k  -> 
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x ) )
3231ralimi 2725 . . . 4  |-  ( A. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m )
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x  ->  A. x  e.  RR+  E. m  e.  Z  A. k  e.  Z  ( m  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x
) )
3311, 32syl 16 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. m  e.  Z  A. k  e.  Z  (
m  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) )
346, 7, 21, 33caurcvgr 12395 . 2  |-  ( ph  ->  F  ~~> r  ( limsup `  F ) )
3515a1d 23 . . . . . 6  |-  ( m  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  m ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x  ->  M  e.  ZZ ) )
3635rexlimiv 2768 . . . . 5  |-  ( E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ( abs `  ( ( F `  k )  -  ( F `  m )
) )  <  x  ->  M  e.  ZZ )
3736rexlimivw 2770 . . . 4  |-  ( E. x  e.  RR+  E. m  e.  Z  A. k  e.  ( ZZ>= `  m )
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x  ->  M  e.  ZZ )
3813, 37syl 16 . . 3  |-  ( ph  ->  M  e.  ZZ )
39 ax-resscn 8981 . . . 4  |-  RR  C_  CC
40 fss 5540 . . . 4  |-  ( ( F : Z --> RR  /\  RR  C_  CC )  ->  F : Z --> CC )
417, 39, 40sylancl 644 . . 3  |-  ( ph  ->  F : Z --> CC )
421, 38, 41rlimclim 12268 . 2  |-  ( ph  ->  ( F  ~~> r  (
limsup `  F )  <->  F  ~~>  ( limsup `  F ) ) )
4334, 42mpbid 202 1  |-  ( ph  ->  F  ~~>  ( limsup `  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   E.wrex 2651    C_ wss 3264   (/)c0 3572   class class class wbr 4154   -->wf 5391   ` cfv 5395  (class class class)co 6021   supcsup 7381   CCcc 8922   RRcr 8923   1c1 8925    +oocpnf 9051   RR*cxr 9053    < clt 9054    <_ cle 9055    - cmin 9224   ZZcz 10215   ZZ>=cuz 10421   RR+crp 10545   abscabs 11967   limsupclsp 12192    ~~> cli 12206    ~~> r crli 12207
This theorem is referenced by:  caurcvg2  12399  mbflimlem  19427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-rp 10546  df-ico 10855  df-fl 11130  df-seq 11252  df-exp 11311  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-limsup 12193  df-clim 12210  df-rlim 12211
  Copyright terms: Public domain W3C validator