MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cctop Unicode version

Theorem cctop 16737
Description: The countable complement topology on a set  A. Example 4 in [Munkres] p. 77. (Contributed by FL, 23-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
cctop  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  e.  (TopOn `  A ) )
Distinct variable group:    x, A
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
Allowed substitution hint:    V( x)

Proof of Theorem cctop
StepHypRef Expression
1 uniss 3849 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  C_  U. { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
2 ssrab2 3259 . . . . . . . . 9  |-  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  C_  ~P A
3 sspwuni 3988 . . . . . . . . 9  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  C_  ~P A  <->  U. { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) }  C_  A )
42, 3mpbi 201 . . . . . . . 8  |-  U. {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  C_  A
51, 4syl6ss 3192 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  C_  A )
6 vex 2792 . . . . . . . . 9  |-  y  e. 
_V
76uniex 4515 . . . . . . . 8  |-  U. y  e.  _V
87elpw 3632 . . . . . . 7  |-  ( U. y  e.  ~P A  <->  U. y  C_  A )
95, 8sylibr 205 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  ~P A
)
10 uni0c 3854 . . . . . . . . . . 11  |-  ( U. y  =  (/)  <->  A. z  e.  y  z  =  (/) )
1110notbii 289 . . . . . . . . . 10  |-  ( -. 
U. y  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
12 rexnal 2555 . . . . . . . . . 10  |-  ( E. z  e.  y  -.  z  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
1311, 12bitr4i 245 . . . . . . . . 9  |-  ( -. 
U. y  =  (/)  <->  E. z  e.  y  -.  z  =  (/) )
14 ssel2 3176 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
15 difeq2 3289 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( A  \  x )  =  ( A  \  z
) )
1615breq1d 4034 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
( A  \  x
)  ~<_  om  <->  ( A  \ 
z )  ~<_  om )
)
17 eqeq1 2290 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
x  =  (/)  <->  z  =  (/) ) )
1816, 17orbi12d 692 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
( ( A  \  x )  ~<_  om  \/  x  =  (/) )  <->  ( ( A  \  z )  ~<_  om  \/  z  =  (/) ) ) )
1918elrab 2924 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( z  e.  ~P A  /\  (
( A  \  z
)  ~<_  om  \/  z  =  (/) ) ) )
2014, 19sylib 190 . . . . . . . . . . . . . . . 16  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( z  e.  ~P A  /\  ( ( A 
\  z )  ~<_  om  \/  z  =  (/) ) ) )
2120simprd 451 . . . . . . . . . . . . . . 15  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) )
2221ord 368 . . . . . . . . . . . . . 14  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  ( A 
\  z )  ~<_  om 
->  z  =  (/) ) )
2322con1d 118 . . . . . . . . . . . . 13  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  z  =  (/)  ->  ( A  \ 
z )  ~<_  om )
)
2423imp 420 . . . . . . . . . . . 12  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \ 
z )  ~<_  om )
25 reldom 6864 . . . . . . . . . . . . . . . 16  |-  Rel  ~<_
2625brrelexi 4728 . . . . . . . . . . . . . . 15  |-  ( ( A  \  z )  ~<_  om  ->  ( A  \  z )  e.  _V )
2726adantl 454 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  z )  e. 
_V )
28 simpllr 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  z  e.  y )
29 elssuni 3856 . . . . . . . . . . . . . . 15  |-  ( z  e.  y  ->  z  C_ 
U. y )
30 sscon 3311 . . . . . . . . . . . . . . 15  |-  ( z 
C_  U. y  ->  ( A  \  U. y ) 
C_  ( A  \ 
z ) )
3128, 29, 303syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  U. y ) 
C_  ( A  \ 
z ) )
32 ssdomg 6902 . . . . . . . . . . . . . 14  |-  ( ( A  \  z )  e.  _V  ->  (
( A  \  U. y )  C_  ( A  \  z )  -> 
( A  \  U. y )  ~<_  ( A 
\  z ) ) )
3327, 31, 32sylc 58 . . . . . . . . . . . . 13  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  U. y )  ~<_  ( A  \  z
) )
34 domtr 6909 . . . . . . . . . . . . 13  |-  ( ( ( A  \  U. y )  ~<_  ( A 
\  z )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  U. y )  ~<_  om )
3533, 34sylancom 650 . . . . . . . . . . . 12  |-  ( ( ( ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  /\  ( A  \  z
)  ~<_  om )  ->  ( A  \  U. y )  ~<_  om )
3624, 35mpdan 651 . . . . . . . . . . 11  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \  U. y )  ~<_  om )
3736exp31 589 . . . . . . . . . 10  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( z  e.  y  -> 
( -.  z  =  (/)  ->  ( A  \  U. y )  ~<_  om )
) )
3837rexlimdv 2667 . . . . . . . . 9  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( E. z  e.  y  -.  z  =  (/)  ->  ( A  \  U. y )  ~<_  om )
)
3913, 38syl5bi 210 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( -.  U. y  =  (/)  ->  ( A  \  U. y )  ~<_  om )
)
4039con1d 118 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( -.  ( A  \  U. y )  ~<_  om  ->  U. y  =  (/) ) )
4140orrd 369 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  ( ( A  \  U. y )  ~<_  om  \/  U. y  =  (/) ) )
42 difeq2 3289 . . . . . . . . 9  |-  ( x  =  U. y  -> 
( A  \  x
)  =  ( A 
\  U. y ) )
4342breq1d 4034 . . . . . . . 8  |-  ( x  =  U. y  -> 
( ( A  \  x )  ~<_  om  <->  ( A  \ 
U. y )  ~<_  om ) )
44 eqeq1 2290 . . . . . . . 8  |-  ( x  =  U. y  -> 
( x  =  (/)  <->  U. y  =  (/) ) )
4543, 44orbi12d 692 . . . . . . 7  |-  ( x  =  U. y  -> 
( ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) 
<->  ( ( A  \  U. y )  ~<_  om  \/  U. y  =  (/) ) ) )
4645elrab 2924 . . . . . 6  |-  ( U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( U. y  e.  ~P A  /\  ( ( A  \  U. y )  ~<_  om  \/  U. y  =  (/) ) ) )
479, 41, 46sylanbrc 647 . . . . 5  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
4847ax-gen 1534 . . . 4  |-  A. y
( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
49 ssinss1 3398 . . . . . . . . 9  |-  ( y 
C_  A  ->  (
y  i^i  z )  C_  A )
506elpw 3632 . . . . . . . . 9  |-  ( y  e.  ~P A  <->  y  C_  A )
516inex1 4156 . . . . . . . . . 10  |-  ( y  i^i  z )  e. 
_V
5251elpw 3632 . . . . . . . . 9  |-  ( ( y  i^i  z )  e.  ~P A  <->  ( y  i^i  z )  C_  A
)
5349, 50, 523imtr4i 259 . . . . . . . 8  |-  ( y  e.  ~P A  -> 
( y  i^i  z
)  e.  ~P A
)
5453ad2antrr 708 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  ~<_  om  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) ) )  ->  ( y  i^i  z )  e.  ~P A )
55 difindi 3424 . . . . . . . . . . 11  |-  ( A 
\  ( y  i^i  z ) )  =  ( ( A  \ 
y )  u.  ( A  \  z ) )
56 unctb 7826 . . . . . . . . . . 11  |-  ( ( ( A  \  y
)  ~<_  om  /\  ( A  \  z )  ~<_  om )  ->  ( ( A  \  y )  u.  ( A  \  z
) )  ~<_  om )
5755, 56syl5eqbr 4057 . . . . . . . . . 10  |-  ( ( ( A  \  y
)  ~<_  om  /\  ( A  \  z )  ~<_  om )  ->  ( A  \  ( y  i^i  z
) )  ~<_  om )
5857orcd 383 . . . . . . . . 9  |-  ( ( ( A  \  y
)  ~<_  om  /\  ( A  \  z )  ~<_  om )  ->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
59 ineq1 3364 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  ( (/)  i^i  z
) )
60 incom 3362 . . . . . . . . . . . 12  |-  ( (/)  i^i  z )  =  ( z  i^i  (/) )
61 in0 3481 . . . . . . . . . . . 12  |-  ( z  i^i  (/) )  =  (/)
6260, 61eqtri 2304 . . . . . . . . . . 11  |-  ( (/)  i^i  z )  =  (/)
6359, 62syl6eq 2332 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  (/) )
6463olcd 384 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
65 ineq2 3365 . . . . . . . . . . 11  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  ( y  i^i  (/) ) )
66 in0 3481 . . . . . . . . . . 11  |-  ( y  i^i  (/) )  =  (/)
6765, 66syl6eq 2332 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  (/) )
6867olcd 384 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
6958, 64, 68ccase2 916 . . . . . . . 8  |-  ( ( ( ( A  \ 
y )  ~<_  om  \/  y  =  (/) )  /\  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) )  ->  ( ( A 
\  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
7069ad2ant2l 728 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  ~<_  om  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) ) )  ->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) )
7154, 70jca 520 . . . . . 6  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  ~<_  om  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  ~<_  om  \/  z  =  (/) ) ) )  ->  ( (
y  i^i  z )  e.  ~P A  /\  (
( A  \  (
y  i^i  z )
)  ~<_  om  \/  (
y  i^i  z )  =  (/) ) ) )
72 difeq2 3289 . . . . . . . . . 10  |-  ( x  =  y  ->  ( A  \  x )  =  ( A  \  y
) )
7372breq1d 4034 . . . . . . . . 9  |-  ( x  =  y  ->  (
( A  \  x
)  ~<_  om  <->  ( A  \ 
y )  ~<_  om )
)
74 eqeq1 2290 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
7573, 74orbi12d 692 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( A  \  x )  ~<_  om  \/  x  =  (/) )  <->  ( ( A  \  y )  ~<_  om  \/  y  =  (/) ) ) )
7675elrab 2924 . . . . . . 7  |-  ( y  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( y  e.  ~P A  /\  (
( A  \  y
)  ~<_  om  \/  y  =  (/) ) ) )
7776, 19anbi12i 680 . . . . . 6  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )  <-> 
( ( y  e. 
~P A  /\  (
( A  \  y
)  ~<_  om  \/  y  =  (/) ) )  /\  ( z  e.  ~P A  /\  ( ( A 
\  z )  ~<_  om  \/  z  =  (/) ) ) ) )
78 difeq2 3289 . . . . . . . . 9  |-  ( x  =  ( y  i^i  z )  ->  ( A  \  x )  =  ( A  \  (
y  i^i  z )
) )
7978breq1d 4034 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
( A  \  x
)  ~<_  om  <->  ( A  \ 
( y  i^i  z
) )  ~<_  om )
)
80 eqeq1 2290 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
x  =  (/)  <->  ( y  i^i  z )  =  (/) ) )
8179, 80orbi12d 692 . . . . . . 7  |-  ( x  =  ( y  i^i  z )  ->  (
( ( A  \  x )  ~<_  om  \/  x  =  (/) )  <->  ( ( A  \  ( y  i^i  z ) )  ~<_  om  \/  ( y  i^i  z )  =  (/) ) ) )
8281elrab 2924 . . . . . 6  |-  ( ( y  i^i  z )  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( (
y  i^i  z )  e.  ~P A  /\  (
( A  \  (
y  i^i  z )
)  ~<_  om  \/  (
y  i^i  z )  =  (/) ) ) )
8371, 77, 823imtr4i 259 . . . . 5  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  /\  z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )  ->  ( y  i^i  z )  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) } )
8483rgen2a 2610 . . . 4  |-  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } A. z  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) }  ( y  i^i  z )  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }
8548, 84pm3.2i 443 . . 3  |-  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } A. z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  (
y  i^i  z )  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } )
86 pwexg 4193 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  _V )
87 rabexg 4165 . . . 4  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  e.  _V )
88 istopg 16635 . . . 4  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  e.  _V  ->  ( { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  e.  Top 
<->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )  /\  A. y  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } A. z  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) }  ( y  i^i  z )  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) } ) ) )
8986, 87, 883syl 20 . . 3  |-  ( A  e.  V  ->  ( { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } A. z  e.  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  (
y  i^i  z )  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } ) ) )
9085, 89mpbiri 226 . 2  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  e.  Top )
91 pwidg 3638 . . . . 5  |-  ( A  e.  V  ->  A  e.  ~P A )
92 omex 7339 . . . . . . . 8  |-  om  e.  _V
93920dom 6986 . . . . . . 7  |-  (/)  ~<_  om
9493orci 381 . . . . . 6  |-  ( (/)  ~<_  om  \/  A  =  (/) )
9594a1i 12 . . . . 5  |-  ( A  e.  V  ->  ( (/)  ~<_  om  \/  A  =  (/) ) )
96 difeq2 3289 . . . . . . . . 9  |-  ( x  =  A  ->  ( A  \  x )  =  ( A  \  A
) )
97 difid 3523 . . . . . . . . 9  |-  ( A 
\  A )  =  (/)
9896, 97syl6eq 2332 . . . . . . . 8  |-  ( x  =  A  ->  ( A  \  x )  =  (/) )
9998breq1d 4034 . . . . . . 7  |-  ( x  =  A  ->  (
( A  \  x
)  ~<_  om  <->  (/)  ~<_  om ) )
100 eqeq1 2290 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
10199, 100orbi12d 692 . . . . . 6  |-  ( x  =  A  ->  (
( ( A  \  x )  ~<_  om  \/  x  =  (/) )  <->  ( (/)  ~<_  om  \/  A  =  (/) ) ) )
102101elrab 2924 . . . . 5  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  <->  ( A  e.  ~P A  /\  ( (/)  ~<_  om  \/  A  =  (/) ) ) )
10391, 95, 102sylanbrc 647 . . . 4  |-  ( A  e.  V  ->  A  e.  { x  e.  ~P A  |  ( ( A  \  x )  ~<_  om  \/  x  =  (/) ) } )
104 elssuni 3856 . . . 4  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  ->  A 
C_  U. { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
105103, 104syl 17 . . 3  |-  ( A  e.  V  ->  A  C_ 
U. { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
1064a1i 12 . . 3  |-  ( A  e.  V  ->  U. {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  C_  A )
107105, 106eqssd 3197 . 2  |-  ( A  e.  V  ->  A  =  U. { x  e. 
~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) } )
108 istopon 16657 . 2  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  e.  (TopOn `  A )  <->  ( {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) }  e.  Top  /\  A  =  U. {
x  e.  ~P A  |  ( ( A 
\  x )  ~<_  om  \/  x  =  (/) ) } ) )
10990, 107, 108sylanbrc 647 1  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  ~<_  om  \/  x  =  (/) ) }  e.  (TopOn `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360   A.wal 1528    = wceq 1624    e. wcel 1685   A.wral 2544   E.wrex 2545   {crab 2548   _Vcvv 2789    \ cdif 3150    u. cun 3151    i^i cin 3152    C_ wss 3153   (/)c0 3456   ~Pcpw 3626   U.cuni 3828   class class class wbr 4024   omcom 4655   ` cfv 5221    ~<_ cdom 6856   Topctop 16625  TopOnctopon 16626
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-inf2 7337
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-isom 5230  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-fin 6862  df-oi 7220  df-card 7567  df-cda 7789  df-top 16630  df-topon 16633
  Copyright terms: Public domain W3C validator