MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cda0en Unicode version

Theorem cda0en 7759
Description: Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cda0en  |-  ( A  e.  V  ->  ( A  +c  (/) )  ~~  A
)

Proof of Theorem cda0en
StepHypRef Expression
1 0ex 4110 . . 3  |-  (/)  e.  _V
2 in0 3441 . . 3  |-  ( A  i^i  (/) )  =  (/)
3 cdaun 7752 . . 3  |-  ( ( A  e.  V  /\  (/) 
e.  _V  /\  ( A  i^i  (/) )  =  (/) )  ->  ( A  +c  (/) )  ~~  ( A  u.  (/) ) )
41, 2, 3mp3an23 1274 . 2  |-  ( A  e.  V  ->  ( A  +c  (/) )  ~~  ( A  u.  (/) ) )
5 un0 3440 . 2  |-  ( A  u.  (/) )  =  A
64, 5syl6breq 4022 1  |-  ( A  e.  V  ->  ( A  +c  (/) )  ~~  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   _Vcvv 2757    u. cun 3111    i^i cin 3112   (/)c0 3416   class class class wbr 3983  (class class class)co 5778    ~~ cen 6814    +c ccda 7747
This theorem is referenced by:  cdalepw  7776
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pow 4146  ax-pr 4172  ax-un 4470
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2521  df-rex 2522  df-rab 2525  df-v 2759  df-sbc 2953  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-pss 3129  df-nul 3417  df-if 3526  df-pw 3587  df-sn 3606  df-pr 3607  df-tp 3608  df-op 3609  df-uni 3788  df-int 3823  df-br 3984  df-opab 4038  df-mpt 4039  df-tr 4074  df-eprel 4263  df-id 4267  df-po 4272  df-so 4273  df-fr 4310  df-we 4312  df-ord 4353  df-on 4354  df-suc 4356  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-fun 4669  df-fn 4670  df-f 4671  df-f1 4672  df-fo 4673  df-f1o 4674  df-fv 4675  df-ov 5781  df-oprab 5782  df-mpt2 5783  df-1o 6433  df-en 6818  df-cda 7748
  Copyright terms: Public domain W3C validator