MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdacomen Unicode version

Theorem cdacomen 7996
Description: Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cdacomen  |-  ( A  +c  B )  ~~  ( B  +c  A
)

Proof of Theorem cdacomen
StepHypRef Expression
1 1on 6669 . . . . 5  |-  1o  e.  On
2 xpsneng 7131 . . . . 5  |-  ( ( A  e.  _V  /\  1o  e.  On )  -> 
( A  X.  { 1o } )  ~~  A
)
31, 2mpan2 653 . . . 4  |-  ( A  e.  _V  ->  ( A  X.  { 1o }
)  ~~  A )
4 0ex 4282 . . . . 5  |-  (/)  e.  _V
5 xpsneng 7131 . . . . 5  |-  ( ( B  e.  _V  /\  (/) 
e.  _V )  ->  ( B  X.  { (/) } ) 
~~  B )
64, 5mpan2 653 . . . 4  |-  ( B  e.  _V  ->  ( B  X.  { (/) } ) 
~~  B )
7 ensym 7094 . . . . 5  |-  ( ( A  X.  { 1o } )  ~~  A  ->  A  ~~  ( A  X.  { 1o }
) )
8 ensym 7094 . . . . 5  |-  ( ( B  X.  { (/) } )  ~~  B  ->  B  ~~  ( B  X.  { (/) } ) )
9 incom 3478 . . . . . . 7  |-  ( ( A  X.  { 1o } )  i^i  ( B  X.  { (/) } ) )  =  ( ( B  X.  { (/) } )  i^i  ( A  X.  { 1o }
) )
10 xp01disj 6678 . . . . . . 7  |-  ( ( B  X.  { (/) } )  i^i  ( A  X.  { 1o }
) )  =  (/)
119, 10eqtri 2409 . . . . . 6  |-  ( ( A  X.  { 1o } )  i^i  ( B  X.  { (/) } ) )  =  (/)
12 cdaenun 7989 . . . . . 6  |-  ( ( A  ~~  ( A  X.  { 1o }
)  /\  B  ~~  ( B  X.  { (/) } )  /\  ( ( A  X.  { 1o } )  i^i  ( B  X.  { (/) } ) )  =  (/) )  -> 
( A  +c  B
)  ~~  ( ( A  X.  { 1o }
)  u.  ( B  X.  { (/) } ) ) )
1311, 12mp3an3 1268 . . . . 5  |-  ( ( A  ~~  ( A  X.  { 1o }
)  /\  B  ~~  ( B  X.  { (/) } ) )  ->  ( A  +c  B )  ~~  ( ( A  X.  { 1o } )  u.  ( B  X.  { (/)
} ) ) )
147, 8, 13syl2an 464 . . . 4  |-  ( ( ( A  X.  { 1o } )  ~~  A  /\  ( B  X.  { (/)
} )  ~~  B
)  ->  ( A  +c  B )  ~~  (
( A  X.  { 1o } )  u.  ( B  X.  { (/) } ) ) )
153, 6, 14syl2an 464 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  ~~  ( ( A  X.  { 1o }
)  u.  ( B  X.  { (/) } ) ) )
16 cdaval 7985 . . . . 5  |-  ( ( B  e.  _V  /\  A  e.  _V )  ->  ( B  +c  A
)  =  ( ( B  X.  { (/) } )  u.  ( A  X.  { 1o }
) ) )
1716ancoms 440 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( B  +c  A
)  =  ( ( B  X.  { (/) } )  u.  ( A  X.  { 1o }
) ) )
18 uncom 3436 . . . 4  |-  ( ( B  X.  { (/) } )  u.  ( A  X.  { 1o }
) )  =  ( ( A  X.  { 1o } )  u.  ( B  X.  { (/) } ) )
1917, 18syl6eq 2437 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( B  +c  A
)  =  ( ( A  X.  { 1o } )  u.  ( B  X.  { (/) } ) ) )
2015, 19breqtrrd 4181 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  ~~  ( B  +c  A ) )
214enref 7078 . . . 4  |-  (/)  ~~  (/)
2221a1i 11 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
(/)  ~~  (/) )
23 cdafn 7984 . . . . 5  |-  +c  Fn  ( _V  X.  _V )
24 fndm 5486 . . . . 5  |-  (  +c  Fn  ( _V  X.  _V )  ->  dom  +c  =  ( _V  X.  _V ) )
2523, 24ax-mp 8 . . . 4  |-  dom  +c  =  ( _V  X.  _V )
2625ndmov 6172 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  (/) )
27 ancom 438 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( B  e.  _V  /\  A  e.  _V )
)
2825ndmov 6172 . . . 4  |-  ( -.  ( B  e.  _V  /\  A  e.  _V )  ->  ( B  +c  A
)  =  (/) )
2927, 28sylnbi 298 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( B  +c  A
)  =  (/) )
3022, 26, 293brtr4d 4185 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  ~~  ( B  +c  A ) )
3120, 30pm2.61i 158 1  |-  ( A  +c  B )  ~~  ( B  +c  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2901    u. cun 3263    i^i cin 3264   (/)c0 3573   {csn 3759   class class class wbr 4155   Oncon0 4524    X. cxp 4818   dom cdm 4820    Fn wfn 5391  (class class class)co 6022   1oc1o 6655    ~~ cen 7044    +c ccda 7982
This theorem is referenced by:  cdadom2  8002  cdalepw  8011  infcda  8023  alephadd  8387  gchdomtri  8439  pwxpndom  8476  gchhar  8481  gchpwdom  8484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-suc 4530  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-1o 6662  df-er 6843  df-en 7048  df-cda 7983
  Copyright terms: Public domain W3C validator