MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdadom1 Unicode version

Theorem cdadom1 7780
Description: Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cdadom1  |-  ( A  ~<_  B  ->  ( A  +c  C )  ~<_  ( B  +c  C ) )

Proof of Theorem cdadom1
StepHypRef Expression
1 snex 4188 . . . . 5  |-  { (/) }  e.  _V
21xpdom1 6929 . . . 4  |-  ( A  ~<_  B  ->  ( A  X.  { (/) } )  ~<_  ( B  X.  { (/) } ) )
3 snex 4188 . . . . . 6  |-  { 1o }  e.  _V
4 xpexg 4788 . . . . . 6  |-  ( ( C  e.  _V  /\  { 1o }  e.  _V )  ->  ( C  X.  { 1o } )  e. 
_V )
53, 4mpan2 655 . . . . 5  |-  ( C  e.  _V  ->  ( C  X.  { 1o }
)  e.  _V )
6 domrefg 6864 . . . . 5  |-  ( ( C  X.  { 1o } )  e.  _V  ->  ( C  X.  { 1o } )  ~<_  ( C  X.  { 1o }
) )
75, 6syl 17 . . . 4  |-  ( C  e.  _V  ->  ( C  X.  { 1o }
)  ~<_  ( C  X.  { 1o } ) )
8 xp01disj 6463 . . . . 5  |-  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o }
) )  =  (/)
9 undom 6918 . . . . 5  |-  ( ( ( ( A  X.  { (/) } )  ~<_  ( B  X.  { (/) } )  /\  ( C  X.  { 1o }
)  ~<_  ( C  X.  { 1o } ) )  /\  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o } ) )  =  (/) )  ->  (
( A  X.  { (/)
} )  u.  ( C  X.  { 1o }
) )  ~<_  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
108, 9mpan2 655 . . . 4  |-  ( ( ( A  X.  { (/)
} )  ~<_  ( B  X.  { (/) } )  /\  ( C  X.  { 1o } )  ~<_  ( C  X.  { 1o } ) )  -> 
( ( A  X.  { (/) } )  u.  ( C  X.  { 1o } ) )  ~<_  ( ( B  X.  { (/)
} )  u.  ( C  X.  { 1o }
) ) )
112, 7, 10syl2an 465 . . 3  |-  ( ( A  ~<_  B  /\  C  e.  _V )  ->  (
( A  X.  { (/)
} )  u.  ( C  X.  { 1o }
) )  ~<_  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
12 reldom 6837 . . . . 5  |-  Rel  ~<_
1312brrelexi 4717 . . . 4  |-  ( A  ~<_  B  ->  A  e.  _V )
14 cdaval 7764 . . . 4  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A  +c  C
)  =  ( ( A  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
1513, 14sylan 459 . . 3  |-  ( ( A  ~<_  B  /\  C  e.  _V )  ->  ( A  +c  C )  =  ( ( A  X.  { (/) } )  u.  ( C  X.  { 1o } ) ) )
1612brrelex2i 4718 . . . 4  |-  ( A  ~<_  B  ->  B  e.  _V )
17 cdaval 7764 . . . 4  |-  ( ( B  e.  _V  /\  C  e.  _V )  ->  ( B  +c  C
)  =  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
1816, 17sylan 459 . . 3  |-  ( ( A  ~<_  B  /\  C  e.  _V )  ->  ( B  +c  C )  =  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o } ) ) )
1911, 15, 183brtr4d 4027 . 2  |-  ( ( A  ~<_  B  /\  C  e.  _V )  ->  ( A  +c  C )  ~<_  ( B  +c  C ) )
20 simpr 449 . . . . 5  |-  ( ( A  ~<_  B  /\  -.  C  e.  _V )  ->  -.  C  e.  _V )
2120intnand 887 . . . 4  |-  ( ( A  ~<_  B  /\  -.  C  e.  _V )  ->  -.  ( A  e. 
_V  /\  C  e.  _V ) )
22 cdafn 7763 . . . . . 6  |-  +c  Fn  ( _V  X.  _V )
23 fndm 5281 . . . . . 6  |-  (  +c  Fn  ( _V  X.  _V )  ->  dom  +c  =  ( _V  X.  _V ) )
2422, 23ax-mp 10 . . . . 5  |-  dom  +c  =  ( _V  X.  _V )
2524ndmov 5938 . . . 4  |-  ( -.  ( A  e.  _V  /\  C  e.  _V )  ->  ( A  +c  C
)  =  (/) )
2621, 25syl 17 . . 3  |-  ( ( A  ~<_  B  /\  -.  C  e.  _V )  ->  ( A  +c  C
)  =  (/) )
27 ovex 5817 . . . 4  |-  ( B  +c  C )  e. 
_V
28270dom 6959 . . 3  |-  (/)  ~<_  ( B  +c  C )
2926, 28syl6eqbr 4034 . 2  |-  ( ( A  ~<_  B  /\  -.  C  e.  _V )  ->  ( A  +c  C
)  ~<_  ( B  +c  C ) )
3019, 29pm2.61dan 769 1  |-  ( A  ~<_  B  ->  ( A  +c  C )  ~<_  ( B  +c  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   _Vcvv 2763    u. cun 3125    i^i cin 3126   (/)c0 3430   {csn 3614   class class class wbr 3997    X. cxp 4659   dom cdm 4661    Fn wfn 4668  (class class class)co 5792   1oc1o 6440    ~<_ cdom 6829    +c ccda 7761
This theorem is referenced by:  cdadom2  7781  cdalepw  7790  unctb  7799  infdif  7803  gchcdaidm  8258  gchhar  8261  gchpwdom  8264
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-suc 4370  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-1o 6447  df-en 6832  df-dom 6833  df-cda 7762
  Copyright terms: Public domain W3C validator