MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdadom2 Unicode version

Theorem cdadom2 7829
Description: Ordering law for cardinal addition. Theorem 6L(a) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cdadom2  |-  ( A  ~<_  B  ->  ( C  +c  A )  ~<_  ( C  +c  B ) )

Proof of Theorem cdadom2
StepHypRef Expression
1 cdadom1 7828 . 2  |-  ( A  ~<_  B  ->  ( A  +c  C )  ~<_  ( B  +c  C ) )
2 cdacomen 7823 . . 3  |-  ( A  +c  C )  ~~  ( C  +c  A
)
3 cdacomen 7823 . . 3  |-  ( B  +c  C )  ~~  ( C  +c  B
)
4 domen1 7019 . . . 4  |-  ( ( A  +c  C ) 
~~  ( C  +c  A )  ->  (
( A  +c  C
)  ~<_  ( B  +c  C )  <->  ( C  +c  A )  ~<_  ( B  +c  C ) ) )
5 domen2 7020 . . . 4  |-  ( ( B  +c  C ) 
~~  ( C  +c  B )  ->  (
( C  +c  A
)  ~<_  ( B  +c  C )  <->  ( C  +c  A )  ~<_  ( C  +c  B ) ) )
64, 5sylan9bb 680 . . 3  |-  ( ( ( A  +c  C
)  ~~  ( C  +c  A )  /\  ( B  +c  C )  ~~  ( C  +c  B
) )  ->  (
( A  +c  C
)  ~<_  ( B  +c  C )  <->  ( C  +c  A )  ~<_  ( C  +c  B ) ) )
72, 3, 6mp2an 653 . 2  |-  ( ( A  +c  C )  ~<_  ( B  +c  C
)  <->  ( C  +c  A )  ~<_  ( C  +c  B ) )
81, 7sylib 188 1  |-  ( A  ~<_  B  ->  ( C  +c  A )  ~<_  ( C  +c  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   class class class wbr 4039  (class class class)co 5874    ~~ cen 6876    ~<_ cdom 6877    +c ccda 7809
This theorem is referenced by:  cdalepw  7838  unctb  7847  infcdaabs  7848  infcda  7850  infdif  7851  fin45  8034  canthp1  8292  pwcdandom  8305  gchcdaidm  8306  gchhar  8309  gchpwdom  8312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-suc 4414  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-1o 6495  df-er 6676  df-en 6880  df-dom 6881  df-cda 7810
  Copyright terms: Public domain W3C validator