MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaen Unicode version

Theorem cdaen 7801
Description: Cardinal addition of equinumerous sets. Exercise 4.56(b) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cdaen  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  +c  C
)  ~~  ( B  +c  D ) )

Proof of Theorem cdaen
StepHypRef Expression
1 relen 6870 . . . . . 6  |-  Rel  ~~
21brrelexi 4731 . . . . 5  |-  ( A 
~~  B  ->  A  e.  _V )
3 0ex 4152 . . . . 5  |-  (/)  e.  _V
4 xpsneng 6949 . . . . 5  |-  ( ( A  e.  _V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
52, 3, 4sylancl 643 . . . 4  |-  ( A 
~~  B  ->  ( A  X.  { (/) } ) 
~~  A )
61brrelex2i 4732 . . . . . . 7  |-  ( A 
~~  B  ->  B  e.  _V )
7 xpsneng 6949 . . . . . . 7  |-  ( ( B  e.  _V  /\  (/) 
e.  _V )  ->  ( B  X.  { (/) } ) 
~~  B )
86, 3, 7sylancl 643 . . . . . 6  |-  ( A 
~~  B  ->  ( B  X.  { (/) } ) 
~~  B )
9 ensym 6912 . . . . . 6  |-  ( ( B  X.  { (/) } )  ~~  B  ->  B  ~~  ( B  X.  { (/) } ) )
108, 9syl 15 . . . . 5  |-  ( A 
~~  B  ->  B  ~~  ( B  X.  { (/)
} ) )
11 entr 6915 . . . . 5  |-  ( ( A  ~~  B  /\  B  ~~  ( B  X.  { (/) } ) )  ->  A  ~~  ( B  X.  { (/) } ) )
1210, 11mpdan 649 . . . 4  |-  ( A 
~~  B  ->  A  ~~  ( B  X.  { (/)
} ) )
13 entr 6915 . . . 4  |-  ( ( ( A  X.  { (/)
} )  ~~  A  /\  A  ~~  ( B  X.  { (/) } ) )  ->  ( A  X.  { (/) } )  ~~  ( B  X.  { (/) } ) )
145, 12, 13syl2anc 642 . . 3  |-  ( A 
~~  B  ->  ( A  X.  { (/) } ) 
~~  ( B  X.  { (/) } ) )
151brrelexi 4731 . . . . 5  |-  ( C 
~~  D  ->  C  e.  _V )
16 1on 6488 . . . . 5  |-  1o  e.  On
17 xpsneng 6949 . . . . 5  |-  ( ( C  e.  _V  /\  1o  e.  On )  -> 
( C  X.  { 1o } )  ~~  C
)
1815, 16, 17sylancl 643 . . . 4  |-  ( C 
~~  D  ->  ( C  X.  { 1o }
)  ~~  C )
191brrelex2i 4732 . . . . . . 7  |-  ( C 
~~  D  ->  D  e.  _V )
20 xpsneng 6949 . . . . . . 7  |-  ( ( D  e.  _V  /\  1o  e.  On )  -> 
( D  X.  { 1o } )  ~~  D
)
2119, 16, 20sylancl 643 . . . . . 6  |-  ( C 
~~  D  ->  ( D  X.  { 1o }
)  ~~  D )
22 ensym 6912 . . . . . 6  |-  ( ( D  X.  { 1o } )  ~~  D  ->  D  ~~  ( D  X.  { 1o }
) )
2321, 22syl 15 . . . . 5  |-  ( C 
~~  D  ->  D  ~~  ( D  X.  { 1o } ) )
24 entr 6915 . . . . 5  |-  ( ( C  ~~  D  /\  D  ~~  ( D  X.  { 1o } ) )  ->  C  ~~  ( D  X.  { 1o }
) )
2523, 24mpdan 649 . . . 4  |-  ( C 
~~  D  ->  C  ~~  ( D  X.  { 1o } ) )
26 entr 6915 . . . 4  |-  ( ( ( C  X.  { 1o } )  ~~  C  /\  C  ~~  ( D  X.  { 1o }
) )  ->  ( C  X.  { 1o }
)  ~~  ( D  X.  { 1o } ) )
2718, 25, 26syl2anc 642 . . 3  |-  ( C 
~~  D  ->  ( C  X.  { 1o }
)  ~~  ( D  X.  { 1o } ) )
28 xp01disj 6497 . . . 4  |-  ( ( A  X.  { (/) } )  i^i  ( C  X.  { 1o }
) )  =  (/)
29 xp01disj 6497 . . . 4  |-  ( ( B  X.  { (/) } )  i^i  ( D  X.  { 1o }
) )  =  (/)
30 unen 6945 . . . 4  |-  ( ( ( ( A  X.  { (/) } )  ~~  ( B  X.  { (/) } )  /\  ( C  X.  { 1o }
)  ~~  ( D  X.  { 1o } ) )  /\  ( ( ( A  X.  { (/)
} )  i^i  ( C  X.  { 1o }
) )  =  (/)  /\  ( ( B  X.  { (/) } )  i^i  ( D  X.  { 1o } ) )  =  (/) ) )  ->  (
( A  X.  { (/)
} )  u.  ( C  X.  { 1o }
) )  ~~  (
( B  X.  { (/)
} )  u.  ( D  X.  { 1o }
) ) )
3128, 29, 30mpanr12 666 . . 3  |-  ( ( ( A  X.  { (/)
} )  ~~  ( B  X.  { (/) } )  /\  ( C  X.  { 1o } )  ~~  ( D  X.  { 1o } ) )  -> 
( ( A  X.  { (/) } )  u.  ( C  X.  { 1o } ) )  ~~  ( ( B  X.  { (/) } )  u.  ( D  X.  { 1o } ) ) )
3214, 27, 31syl2an 463 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( ( A  X.  { (/) } )  u.  ( C  X.  { 1o } ) )  ~~  ( ( B  X.  { (/) } )  u.  ( D  X.  { 1o } ) ) )
33 cdaval 7798 . . 3  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A  +c  C
)  =  ( ( A  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
342, 15, 33syl2an 463 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  +c  C
)  =  ( ( A  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
35 cdaval 7798 . . 3  |-  ( ( B  e.  _V  /\  D  e.  _V )  ->  ( B  +c  D
)  =  ( ( B  X.  { (/) } )  u.  ( D  X.  { 1o }
) ) )
366, 19, 35syl2an 463 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( B  +c  D
)  =  ( ( B  X.  { (/) } )  u.  ( D  X.  { 1o }
) ) )
3732, 34, 363brtr4d 4055 1  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  +c  C
)  ~~  ( B  +c  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1625    e. wcel 1686   _Vcvv 2790    u. cun 3152    i^i cin 3153   (/)c0 3457   {csn 3642   class class class wbr 4025   Oncon0 4394    X. cxp 4689  (class class class)co 5860   1oc1o 6474    ~~ cen 6862    +c ccda 7795
This theorem is referenced by:  cdaenun  7802  cardacda  7826  pwsdompw  7832  ackbij1lem5  7852  ackbij1lem9  7856  gchhar  8295
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-sbc 2994  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-suc 4400  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1o 6481  df-er 6662  df-en 6866  df-cda 7796
  Copyright terms: Public domain W3C validator