MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaval Unicode version

Theorem cdaval 7764
Description: Value of cardinal addition. Definition of cardinal sum in [Mendelson] p. 258. For cardinal arithmetic, we follow Mendelson. Rather than defining operations restricted to cardinal numbers, we use this disjoint union operation for addition, while cross product and set exponentiation stand in for cardinal multiplication and exponentiation. Equinumerosity and dominance serve the roles of equality and ordering. If we wanted to, we could easily convert our theorems to actual cardinal number operations via carden 8141, carddom 8144, and cardsdom 8145. The advantage of Mendelson's approach is that we can directly use many equinumerosity theorems that we already have available. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cdaval  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )

Proof of Theorem cdaval
StepHypRef Expression
1 elex 2771 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 elex 2771 . 2  |-  ( B  e.  W  ->  B  e.  _V )
3 p0ex 4169 . . . . . 6  |-  { (/) }  e.  _V
4 xpexg 4788 . . . . . 6  |-  ( ( A  e.  _V  /\  {
(/) }  e.  _V )  ->  ( A  X.  { (/) } )  e. 
_V )
53, 4mpan2 655 . . . . 5  |-  ( A  e.  _V  ->  ( A  X.  { (/) } )  e.  _V )
6 snex 4188 . . . . . 6  |-  { 1o }  e.  _V
7 xpexg 4788 . . . . . 6  |-  ( ( B  e.  _V  /\  { 1o }  e.  _V )  ->  ( B  X.  { 1o } )  e. 
_V )
86, 7mpan2 655 . . . . 5  |-  ( B  e.  _V  ->  ( B  X.  { 1o }
)  e.  _V )
95, 8anim12i 551 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( ( A  X.  { (/) } )  e. 
_V  /\  ( B  X.  { 1o } )  e.  _V ) )
10 unexb 4492 . . . 4  |-  ( ( ( A  X.  { (/)
} )  e.  _V  /\  ( B  X.  { 1o } )  e.  _V ) 
<->  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) )  e. 
_V )
119, 10sylib 190 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) )  e. 
_V )
12 xpeq1 4691 . . . . 5  |-  ( x  =  A  ->  (
x  X.  { (/) } )  =  ( A  X.  { (/) } ) )
1312uneq1d 3303 . . . 4  |-  ( x  =  A  ->  (
( x  X.  { (/)
} )  u.  (
y  X.  { 1o } ) )  =  ( ( A  X.  { (/) } )  u.  ( y  X.  { 1o } ) ) )
14 xpeq1 4691 . . . . 5  |-  ( y  =  B  ->  (
y  X.  { 1o } )  =  ( B  X.  { 1o } ) )
1514uneq2d 3304 . . . 4  |-  ( y  =  B  ->  (
( A  X.  { (/)
} )  u.  (
y  X.  { 1o } ) )  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) )
16 df-cda 7762 . . . 4  |-  +c  =  ( x  e.  _V ,  y  e.  _V  |->  ( ( x  X.  { (/) } )  u.  ( y  X.  { 1o } ) ) )
1713, 15, 16ovmpt2g 5916 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  (
( A  X.  { (/)
} )  u.  ( B  X.  { 1o }
) )  e.  _V )  ->  ( A  +c  B )  =  ( ( A  X.  { (/)
} )  u.  ( B  X.  { 1o }
) ) )
1811, 17mpd3an3 1283 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
191, 2, 18syl2an 465 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   _Vcvv 2763    u. cun 3125   (/)c0 3430   {csn 3614    X. cxp 4659  (class class class)co 5792   1oc1o 6440    +c ccda 7761
This theorem is referenced by:  uncdadom  7765  cdaun  7766  cdaen  7767  cda1dif  7770  pm110.643  7771  xp2cda  7774  cdacomen  7775  cdaassen  7776  xpcdaen  7777  mapcdaen  7778  cdadom1  7780  cdaxpdom  7783  cdafi  7784  cdainf  7786  infcda1  7787  pwcdadom  7810  isfin4-3  7909  alephadd  8167  canthp1lem2  8243  xpsc  13421
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-cda 7762
  Copyright terms: Public domain W3C validator