MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaval Unicode version

Theorem cdaval 8034
Description: Value of cardinal addition. Definition of cardinal sum in [Mendelson] p. 258. For cardinal arithmetic, we follow Mendelson. Rather than defining operations restricted to cardinal numbers, we use this disjoint union operation for addition, while cross product and set exponentiation stand in for cardinal multiplication and exponentiation. Equinumerosity and dominance serve the roles of equality and ordering. If we wanted to, we could easily convert our theorems to actual cardinal number operations via carden 8410, carddom 8413, and cardsdom 8414. The advantage of Mendelson's approach is that we can directly use many equinumerosity theorems that we already have available. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cdaval  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )

Proof of Theorem cdaval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2951 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 elex 2951 . 2  |-  ( B  e.  W  ->  B  e.  _V )
3 p0ex 4373 . . . . . 6  |-  { (/) }  e.  _V
4 xpexg 4975 . . . . . 6  |-  ( ( A  e.  _V  /\  {
(/) }  e.  _V )  ->  ( A  X.  { (/) } )  e. 
_V )
53, 4mpan2 653 . . . . 5  |-  ( A  e.  _V  ->  ( A  X.  { (/) } )  e.  _V )
6 snex 4392 . . . . . 6  |-  { 1o }  e.  _V
7 xpexg 4975 . . . . . 6  |-  ( ( B  e.  _V  /\  { 1o }  e.  _V )  ->  ( B  X.  { 1o } )  e. 
_V )
86, 7mpan2 653 . . . . 5  |-  ( B  e.  _V  ->  ( B  X.  { 1o }
)  e.  _V )
95, 8anim12i 550 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( ( A  X.  { (/) } )  e. 
_V  /\  ( B  X.  { 1o } )  e.  _V ) )
10 unexb 4695 . . . 4  |-  ( ( ( A  X.  { (/)
} )  e.  _V  /\  ( B  X.  { 1o } )  e.  _V ) 
<->  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) )  e. 
_V )
119, 10sylib 189 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) )  e. 
_V )
12 xpeq1 4878 . . . . 5  |-  ( x  =  A  ->  (
x  X.  { (/) } )  =  ( A  X.  { (/) } ) )
1312uneq1d 3487 . . . 4  |-  ( x  =  A  ->  (
( x  X.  { (/)
} )  u.  (
y  X.  { 1o } ) )  =  ( ( A  X.  { (/) } )  u.  ( y  X.  { 1o } ) ) )
14 xpeq1 4878 . . . . 5  |-  ( y  =  B  ->  (
y  X.  { 1o } )  =  ( B  X.  { 1o } ) )
1514uneq2d 3488 . . . 4  |-  ( y  =  B  ->  (
( A  X.  { (/)
} )  u.  (
y  X.  { 1o } ) )  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) )
16 df-cda 8032 . . . 4  |-  +c  =  ( x  e.  _V ,  y  e.  _V  |->  ( ( x  X.  { (/) } )  u.  ( y  X.  { 1o } ) ) )
1713, 15, 16ovmpt2g 6194 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  (
( A  X.  { (/)
} )  u.  ( B  X.  { 1o }
) )  e.  _V )  ->  ( A  +c  B )  =  ( ( A  X.  { (/)
} )  u.  ( B  X.  { 1o }
) ) )
1811, 17mpd3an3 1280 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
191, 2, 18syl2an 464 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2943    u. cun 3305   (/)c0 3615   {csn 3801    X. cxp 4862  (class class class)co 6067   1oc1o 6703    +c ccda 8031
This theorem is referenced by:  uncdadom  8035  cdaun  8036  cdaen  8037  cda1dif  8040  pm110.643  8041  xp2cda  8044  cdacomen  8045  cdaassen  8046  xpcdaen  8047  mapcdaen  8048  cdadom1  8050  cdaxpdom  8053  cdafi  8054  cdainf  8056  infcda1  8057  pwcdadom  8080  isfin4-3  8179  alephadd  8436  canthp1lem2  8512  xpsc  13765
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-ral 2697  df-rex 2698  df-rab 2701  df-v 2945  df-sbc 3149  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-br 4200  df-opab 4254  df-id 4485  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-iota 5404  df-fun 5442  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-cda 8032
  Copyright terms: Public domain W3C validator