MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaxpdom Unicode version

Theorem cdaxpdom 7831
Description: Cross product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
cdaxpdom  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  +c  B
)  ~<_  ( A  X.  B ) )

Proof of Theorem cdaxpdom
StepHypRef Expression
1 relsdom 6886 . . . . 5  |-  Rel  ~<
21brrelex2i 4746 . . . 4  |-  ( 1o 
~<  A  ->  A  e. 
_V )
31brrelex2i 4746 . . . 4  |-  ( 1o 
~<  B  ->  B  e. 
_V )
4 cdaval 7812 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
52, 3, 4syl2an 463 . . 3  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
6 0ex 4166 . . . . . . 7  |-  (/)  e.  _V
7 xpsneng 6963 . . . . . . 7  |-  ( ( A  e.  _V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
82, 6, 7sylancl 643 . . . . . 6  |-  ( 1o 
~<  A  ->  ( A  X.  { (/) } ) 
~~  A )
9 sdomen2 7022 . . . . . 6  |-  ( ( A  X.  { (/) } )  ~~  A  -> 
( 1o  ~<  ( A  X.  { (/) } )  <-> 
1o  ~<  A ) )
108, 9syl 15 . . . . 5  |-  ( 1o 
~<  A  ->  ( 1o 
~<  ( A  X.  { (/)
} )  <->  1o  ~<  A ) )
1110ibir 233 . . . 4  |-  ( 1o 
~<  A  ->  1o  ~<  ( A  X.  { (/) } ) )
12 1on 6502 . . . . . . 7  |-  1o  e.  On
13 xpsneng 6963 . . . . . . 7  |-  ( ( B  e.  _V  /\  1o  e.  On )  -> 
( B  X.  { 1o } )  ~~  B
)
143, 12, 13sylancl 643 . . . . . 6  |-  ( 1o 
~<  B  ->  ( B  X.  { 1o }
)  ~~  B )
15 sdomen2 7022 . . . . . 6  |-  ( ( B  X.  { 1o } )  ~~  B  ->  ( 1o  ~<  ( B  X.  { 1o }
)  <->  1o  ~<  B ) )
1614, 15syl 15 . . . . 5  |-  ( 1o 
~<  B  ->  ( 1o 
~<  ( B  X.  { 1o } )  <->  1o  ~<  B ) )
1716ibir 233 . . . 4  |-  ( 1o 
~<  B  ->  1o  ~<  ( B  X.  { 1o } ) )
18 unxpdom 7086 . . . 4  |-  ( ( 1o  ~<  ( A  X.  { (/) } )  /\  1o  ~<  ( B  X.  { 1o } ) )  ->  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) )  ~<_  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) ) )
1911, 17, 18syl2an 463 . . 3  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) )  ~<_  ( ( A  X.  { (/)
} )  X.  ( B  X.  { 1o }
) ) )
205, 19eqbrtrd 4059 . 2  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  +c  B
)  ~<_  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) ) )
21 xpen 7040 . . 3  |-  ( ( ( A  X.  { (/)
} )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B
)  ->  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) ) 
~~  ( A  X.  B ) )
228, 14, 21syl2an 463 . 2  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) )  ~~  ( A  X.  B
) )
23 domentr 6936 . 2  |-  ( ( ( A  +c  B
)  ~<_  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) )  /\  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) ) 
~~  ( A  X.  B ) )  -> 
( A  +c  B
)  ~<_  ( A  X.  B ) )
2420, 22, 23syl2anc 642 1  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  +c  B
)  ~<_  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    u. cun 3163   (/)c0 3468   {csn 3653   class class class wbr 4039   Oncon0 4408    X. cxp 4703  (class class class)co 5874   1oc1o 6488    ~~ cen 6876    ~<_ cdom 6877    ~< csdm 6878    +c ccda 7809
This theorem is referenced by:  canthp1lem1  8290
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-1o 6495  df-2o 6496  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-cda 7810
  Copyright terms: Public domain W3C validator