MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaxpdom Unicode version

Theorem cdaxpdom 7810
Description: Cross product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
cdaxpdom  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  +c  B
)  ~<_  ( A  X.  B ) )

Proof of Theorem cdaxpdom
StepHypRef Expression
1 relsdom 6865 . . . . 5  |-  Rel  ~<
21brrelex2i 4729 . . . 4  |-  ( 1o 
~<  A  ->  A  e. 
_V )
31brrelex2i 4729 . . . 4  |-  ( 1o 
~<  B  ->  B  e. 
_V )
4 cdaval 7791 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
52, 3, 4syl2an 465 . . 3  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
6 0ex 4151 . . . . . . 7  |-  (/)  e.  _V
7 xpsneng 6942 . . . . . . 7  |-  ( ( A  e.  _V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
82, 6, 7sylancl 646 . . . . . 6  |-  ( 1o 
~<  A  ->  ( A  X.  { (/) } ) 
~~  A )
9 sdomen2 7001 . . . . . 6  |-  ( ( A  X.  { (/) } )  ~~  A  -> 
( 1o  ~<  ( A  X.  { (/) } )  <-> 
1o  ~<  A ) )
108, 9syl 17 . . . . 5  |-  ( 1o 
~<  A  ->  ( 1o 
~<  ( A  X.  { (/)
} )  <->  1o  ~<  A ) )
1110ibir 235 . . . 4  |-  ( 1o 
~<  A  ->  1o  ~<  ( A  X.  { (/) } ) )
12 1on 6481 . . . . . . 7  |-  1o  e.  On
13 xpsneng 6942 . . . . . . 7  |-  ( ( B  e.  _V  /\  1o  e.  On )  -> 
( B  X.  { 1o } )  ~~  B
)
143, 12, 13sylancl 646 . . . . . 6  |-  ( 1o 
~<  B  ->  ( B  X.  { 1o }
)  ~~  B )
15 sdomen2 7001 . . . . . 6  |-  ( ( B  X.  { 1o } )  ~~  B  ->  ( 1o  ~<  ( B  X.  { 1o }
)  <->  1o  ~<  B ) )
1614, 15syl 17 . . . . 5  |-  ( 1o 
~<  B  ->  ( 1o 
~<  ( B  X.  { 1o } )  <->  1o  ~<  B ) )
1716ibir 235 . . . 4  |-  ( 1o 
~<  B  ->  1o  ~<  ( B  X.  { 1o } ) )
18 unxpdom 7065 . . . 4  |-  ( ( 1o  ~<  ( A  X.  { (/) } )  /\  1o  ~<  ( B  X.  { 1o } ) )  ->  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) )  ~<_  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) ) )
1911, 17, 18syl2an 465 . . 3  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) )  ~<_  ( ( A  X.  { (/)
} )  X.  ( B  X.  { 1o }
) ) )
205, 19eqbrtrd 4044 . 2  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  +c  B
)  ~<_  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) ) )
21 xpen 7019 . . 3  |-  ( ( ( A  X.  { (/)
} )  ~~  A  /\  ( B  X.  { 1o } )  ~~  B
)  ->  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) ) 
~~  ( A  X.  B ) )
228, 14, 21syl2an 465 . 2  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) )  ~~  ( A  X.  B
) )
23 domentr 6915 . 2  |-  ( ( ( A  +c  B
)  ~<_  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) )  /\  ( ( A  X.  { (/) } )  X.  ( B  X.  { 1o } ) ) 
~~  ( A  X.  B ) )  -> 
( A  +c  B
)  ~<_  ( A  X.  B ) )
2420, 22, 23syl2anc 645 1  |-  ( ( 1o  ~<  A  /\  1o  ~<  B )  -> 
( A  +c  B
)  ~<_  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1628    e. wcel 1688   _Vcvv 2789    u. cun 3151   (/)c0 3456   {csn 3641   class class class wbr 4024   Oncon0 4391    X. cxp 4686  (class class class)co 5819   1oc1o 6467    ~~ cen 6855    ~<_ cdom 6856    ~< csdm 6857    +c ccda 7788
This theorem is referenced by:  canthp1lem1  8269
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-1o 6474  df-2o 6475  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-cda 7789
  Copyright terms: Public domain W3C validator