HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj1i Unicode version

Theorem cdj1i 22843
Description: Two ways to express " A and  B are completely disjoint subspaces." (1) => (2) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 21-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1  |-  A  e.  SH
cdj1.2  |-  B  e.  SH
Assertion
Ref Expression
cdj1i  |-  ( E. w  e.  RR  (
0  <  w  /\  A. y  e.  A  A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) ) )  ->  E. x  e.  RR  ( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) ) ) )
Distinct variable groups:    x, y,
z, w, A    x, v, B, y, z, w
Allowed substitution hint:    A( v)

Proof of Theorem cdj1i
StepHypRef Expression
1 gt0ne0 9119 . . . . . . 7  |-  ( ( w  e.  RR  /\  0  <  w )  ->  w  =/=  0 )
2 rereccl 9358 . . . . . . 7  |-  ( ( w  e.  RR  /\  w  =/=  0 )  -> 
( 1  /  w
)  e.  RR )
31, 2syldan 458 . . . . . 6  |-  ( ( w  e.  RR  /\  0  <  w )  -> 
( 1  /  w
)  e.  RR )
43adantrr 700 . . . . 5  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  (
1  /  w )  e.  RR )
5 recgt0 9480 . . . . . 6  |-  ( ( w  e.  RR  /\  0  <  w )  -> 
0  <  ( 1  /  w ) )
65adantrr 700 . . . . 5  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  0  <  ( 1  /  w
) )
7 1re 8717 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
87a1i 12 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  1  e.  RR )
9 neg1cn 9693 . . . . . . . . . . . . . . . . . . . . 21  |-  -u 1  e.  CC
10 cdj1.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  B  e.  SH
1110sheli 21623 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  B  ->  z  e.  ~H )
12 hvmulcl 21423 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
-u 1  e.  CC  /\  z  e.  ~H )  ->  ( -u 1  .h  z )  e.  ~H )
139, 11, 12sylancr 647 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  B  ->  ( -u 1  .h  z )  e.  ~H )
14 normcl 21534 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u 1  .h  z
)  e.  ~H  ->  (
normh `  ( -u 1  .h  z ) )  e.  RR )
1513, 14syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  B  ->  ( normh `  ( -u 1  .h  z ) )  e.  RR )
1615adantl 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( normh `  ( -u 1  .h  z ) )  e.  RR )
17 readdcl 8700 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  ( normh `  ( -u 1  .h  z ) )  e.  RR )  ->  (
1  +  ( normh `  ( -u 1  .h  z ) ) )  e.  RR )
187, 16, 17sylancr 647 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  e.  RR )
1918adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  e.  RR )
20 cdj1.1 . . . . . . . . . . . . . . . . . . . . . 22  |-  A  e.  SH
2120sheli 21623 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  A  ->  y  e.  ~H )
22 hvsubcl 21427 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  -h  z
)  e.  ~H )
2321, 11, 22syl2an 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( y  -h  z
)  e.  ~H )
24 normcl 21534 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  -h  z )  e.  ~H  ->  ( normh `  ( y  -h  z ) )  e.  RR )
2523, 24syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  RR )
26 remulcl 8702 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  RR  /\  ( normh `  ( y  -h  z ) )  e.  RR )  ->  (
w  x.  ( normh `  ( y  -h  z
) ) )  e.  RR )
2725, 26sylan2 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  ( y  e.  A  /\  z  e.  B
) )  ->  (
w  x.  ( normh `  ( y  -h  z
) ) )  e.  RR )
2827anassrs 632 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR )
2928adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR )
30 normge0 21535 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u 1  .h  z
)  e.  ~H  ->  0  <_  ( normh `  ( -u 1  .h  z ) ) )
3113, 30syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  B  ->  0  <_  ( normh `  ( -u 1  .h  z ) ) )
32 addge01 9164 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  RR  /\  ( normh `  ( -u 1  .h  z ) )  e.  RR )  ->  (
0  <_  ( normh `  ( -u 1  .h  z ) )  <->  1  <_  ( 1  +  ( normh `  ( -u 1  .h  z ) ) ) ) )
337, 32mpan 654 . . . . . . . . . . . . . . . . . . 19  |-  ( (
normh `  ( -u 1  .h  z ) )  e.  RR  ->  ( 0  <_  ( normh `  ( -u 1  .h  z ) )  <->  1  <_  (
1  +  ( normh `  ( -u 1  .h  z ) ) ) ) )
3433biimpa 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( normh `  ( -u 1  .h  z ) )  e.  RR  /\  0  <_ 
( normh `  ( -u 1  .h  z ) ) )  ->  1  <_  (
1  +  ( normh `  ( -u 1  .h  z ) ) ) )
3515, 31, 34syl2anc 645 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  B  ->  1  <_  ( 1  +  (
normh `  ( -u 1  .h  z ) ) ) )
3635ad2antlr 710 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  1  <_  ( 1  +  ( normh `  ( -u 1  .h  z ) ) ) )
37 shmulcl 21627 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B
)
3810, 9, 37mp3an12 1272 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  B  ->  ( -u 1  .h  z )  e.  B )
39 fveq2 5377 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  ( -u 1  .h  z )  ->  ( normh `  v )  =  ( normh `  ( -u 1  .h  z ) ) )
4039oveq2d 5726 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  ( -u 1  .h  z )  ->  (
( normh `  y )  +  ( normh `  v
) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
41 oveq2 5718 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  =  ( -u 1  .h  z )  ->  (
y  +h  v )  =  ( y  +h  ( -u 1  .h  z ) ) )
4241fveq2d 5381 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  ( -u 1  .h  z )  ->  ( normh `  ( y  +h  v ) )  =  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) )
4342oveq2d 5726 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  ( -u 1  .h  z )  ->  (
w  x.  ( normh `  ( y  +h  v
) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
4440, 43breq12d 3933 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( -u 1  .h  z )  ->  (
( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  <-> 
( ( normh `  y
)  +  ( normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) ) )
4544rcla4v 2817 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u 1  .h  z
)  e.  B  -> 
( A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  ->  ( ( normh `  y )  +  (
normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) ) )
4638, 45syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  B  ->  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  ->  ( ( normh `  y )  +  (
normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) ) )
4746imp 420 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  B  /\  A. v  e.  B  ( ( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) ) )  ->  ( ( normh `  y )  +  (
normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
4847ad2ant2lr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
49 oveq1 5717 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  =  ( normh `  y
)  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
5049eqcoms 2256 . . . . . . . . . . . . . . . . . 18  |-  ( (
normh `  y )  =  1  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
5150ad2antll 712 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
52 hvsubval 21426 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  -h  z
)  =  ( y  +h  ( -u 1  .h  z ) ) )
5321, 11, 52syl2an 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( y  -h  z
)  =  ( y  +h  ( -u 1  .h  z ) ) )
5453fveq2d 5381 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  =  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) )
5554oveq2d 5726 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
5655adantll 697 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
5756adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
5848, 51, 573brtr4d 3950 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  <_  (
w  x.  ( normh `  ( y  -h  z
) ) ) )
598, 19, 29, 36, 58letrd 8853 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  1  <_  ( w  x.  ( normh `  ( y  -h  z
) ) ) )
6059ex 425 . . . . . . . . . . . . . 14  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 )  ->  1  <_  (
w  x.  ( normh `  ( y  -h  z
) ) ) ) )
6160adantllr 702 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
( A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 )  ->  1  <_  (
w  x.  ( normh `  ( y  -h  z
) ) ) ) )
62 simplll 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  w  e.  RR )
6323adantll 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
y  -h  z )  e.  ~H )
6463, 24syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  RR )
6562, 64, 26syl2anc 645 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
w  x.  ( normh `  ( y  -h  z
) ) )  e.  RR )
66 simpllr 738 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  0  <  w )
67 lediv1 9501 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR  /\  (
w  e.  RR  /\  0  <  w ) )  ->  ( 1  <_ 
( w  x.  ( normh `  ( y  -h  z ) ) )  <-> 
( 1  /  w
)  <_  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w ) ) )
687, 67mp3an1 1269 . . . . . . . . . . . . . 14  |-  ( ( ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR  /\  (
w  e.  RR  /\  0  <  w ) )  ->  ( 1  <_ 
( w  x.  ( normh `  ( y  -h  z ) ) )  <-> 
( 1  /  w
)  <_  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w ) ) )
6965, 62, 66, 68syl12anc 1185 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
1  <_  ( w  x.  ( normh `  ( y  -h  z ) ) )  <-> 
( 1  /  w
)  <_  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w ) ) )
7061, 69sylibd 207 . . . . . . . . . . . 12  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
( A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 )  ->  ( 1  /  w )  <_  (
( w  x.  ( normh `  ( y  -h  z ) ) )  /  w ) ) )
7170imp 420 . . . . . . . . . . 11  |-  ( ( ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  /  w )  <_ 
( ( w  x.  ( normh `  ( y  -h  z ) ) )  /  w ) )
7225recnd 8741 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  CC )
7372adantll 697 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  CC )
74 recn 8707 . . . . . . . . . . . . . 14  |-  ( w  e.  RR  ->  w  e.  CC )
7574ad3antrrr 713 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  w  e.  CC )
761ad2antrr 709 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  w  =/=  0 )
7773, 75, 76divcan3d 9421 . . . . . . . . . . . 12  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
( w  x.  ( normh `  ( y  -h  z ) ) )  /  w )  =  ( normh `  ( y  -h  z ) ) )
7877adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w )  =  (
normh `  ( y  -h  z ) ) )
7971, 78breqtrd 3944 . . . . . . . . . 10  |-  ( ( ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) )
8079exp43 598 . . . . . . . . 9  |-  ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A
)  ->  ( z  e.  B  ->  ( A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) )  -> 
( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) ) )
8180com23 74 . . . . . . . 8  |-  ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A
)  ->  ( A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) )  -> 
( z  e.  B  ->  ( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) ) )
8281ralrimdv 2594 . . . . . . 7  |-  ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A
)  ->  ( A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) )  ->  A. z  e.  B  ( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) )
8382ralimdva 2583 . . . . . 6  |-  ( ( w  e.  RR  /\  0  <  w )  -> 
( A. y  e.  A  A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  ->  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) )
8483impr 605 . . . . 5  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) )
854, 6, 84jca32 523 . . . 4  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  (
( 1  /  w
)  e.  RR  /\  ( 0  <  (
1  /  w )  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_  ( normh `  ( y  -h  z ) ) ) ) ) )
8685ex 425 . . 3  |-  ( w  e.  RR  ->  (
( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) )  ->  ( (
1  /  w )  e.  RR  /\  (
0  <  ( 1  /  w )  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  =  1  ->  (
1  /  w )  <_  ( normh `  (
y  -h  z ) ) ) ) ) ) )
87 breq2 3924 . . . . 5  |-  ( x  =  ( 1  /  w )  ->  (
0  <  x  <->  0  <  ( 1  /  w ) ) )
88 breq1 3923 . . . . . . 7  |-  ( x  =  ( 1  /  w )  ->  (
x  <_  ( normh `  ( y  -h  z
) )  <->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) )
8988imbi2d 309 . . . . . 6  |-  ( x  =  ( 1  /  w )  ->  (
( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) )  <->  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) ) )
90892ralbidv 2547 . . . . 5  |-  ( x  =  ( 1  /  w )  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) )  <->  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) ) )
9187, 90anbi12d 694 . . . 4  |-  ( x  =  ( 1  /  w )  ->  (
( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) ) )  <->  ( 0  <  ( 1  /  w )  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  =  1  ->  (
1  /  w )  <_  ( normh `  (
y  -h  z ) ) ) ) ) )
9291rcla4ev 2821 . . 3  |-  ( ( ( 1  /  w
)  e.  RR  /\  ( 0  <  (
1  /  w )  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_  ( normh `  ( y  -h  z ) ) ) ) )  ->  E. x  e.  RR  ( 0  < 
x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  x  <_  (
normh `  ( y  -h  z ) ) ) ) )
9386, 92syl6 31 . 2  |-  ( w  e.  RR  ->  (
( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) )  ->  E. x  e.  RR  ( 0  < 
x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  x  <_  (
normh `  ( y  -h  z ) ) ) ) ) )
9493rexlimiv 2623 1  |-  ( E. w  e.  RR  (
0  <  w  /\  A. y  e.  A  A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) ) )  ->  E. x  e.  RR  ( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615   RRcr 8616   0cc0 8617   1c1 8618    + caddc 8620    x. cmul 8622    < clt 8747    <_ cle 8748   -ucneg 8918    / cdiv 9303   ~Hchil 21329    +h cva 21330    .h csm 21331   normhcno 21333    -h cmv 21335   SHcsh 21338
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-hilex 21409  ax-hfvadd 21410  ax-hv0cl 21413  ax-hfvmul 21415  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-hnorm 21378  df-hvsub 21381  df-sh 21616
  Copyright terms: Public domain W3C validator