HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj1i Unicode version

Theorem cdj1i 23029
Description: Two ways to express " A and  B are completely disjoint subspaces." (1) => (2) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 21-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1  |-  A  e.  SH
cdj1.2  |-  B  e.  SH
Assertion
Ref Expression
cdj1i  |-  ( E. w  e.  RR  (
0  <  w  /\  A. y  e.  A  A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) ) )  ->  E. x  e.  RR  ( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) ) ) )
Distinct variable groups:    x, y,
z, w, A    x, v, B, y, z, w
Allowed substitution hint:    A( v)

Proof of Theorem cdj1i
StepHypRef Expression
1 gt0ne0 9255 . . . . . . 7  |-  ( ( w  e.  RR  /\  0  <  w )  ->  w  =/=  0 )
2 rereccl 9494 . . . . . . 7  |-  ( ( w  e.  RR  /\  w  =/=  0 )  -> 
( 1  /  w
)  e.  RR )
31, 2syldan 456 . . . . . 6  |-  ( ( w  e.  RR  /\  0  <  w )  -> 
( 1  /  w
)  e.  RR )
43adantrr 697 . . . . 5  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  (
1  /  w )  e.  RR )
5 recgt0 9616 . . . . . 6  |-  ( ( w  e.  RR  /\  0  <  w )  -> 
0  <  ( 1  /  w ) )
65adantrr 697 . . . . 5  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  0  <  ( 1  /  w
) )
7 1re 8853 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
87a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  1  e.  RR )
9 neg1cn 9829 . . . . . . . . . . . . . . . . . . . . 21  |-  -u 1  e.  CC
10 cdj1.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  B  e.  SH
1110sheli 21809 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  B  ->  z  e.  ~H )
12 hvmulcl 21609 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
-u 1  e.  CC  /\  z  e.  ~H )  ->  ( -u 1  .h  z )  e.  ~H )
139, 11, 12sylancr 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  B  ->  ( -u 1  .h  z )  e.  ~H )
14 normcl 21720 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u 1  .h  z
)  e.  ~H  ->  (
normh `  ( -u 1  .h  z ) )  e.  RR )
1513, 14syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  B  ->  ( normh `  ( -u 1  .h  z ) )  e.  RR )
1615adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( normh `  ( -u 1  .h  z ) )  e.  RR )
17 readdcl 8836 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1  e.  RR  /\  ( normh `  ( -u 1  .h  z ) )  e.  RR )  ->  (
1  +  ( normh `  ( -u 1  .h  z ) ) )  e.  RR )
187, 16, 17sylancr 644 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  e.  RR )
1918adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  e.  RR )
20 cdj1.1 . . . . . . . . . . . . . . . . . . . . . 22  |-  A  e.  SH
2120sheli 21809 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  A  ->  y  e.  ~H )
22 hvsubcl 21613 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  -h  z
)  e.  ~H )
2321, 11, 22syl2an 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( y  -h  z
)  e.  ~H )
24 normcl 21720 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  -h  z )  e.  ~H  ->  ( normh `  ( y  -h  z ) )  e.  RR )
2523, 24syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  RR )
26 remulcl 8838 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  RR  /\  ( normh `  ( y  -h  z ) )  e.  RR )  ->  (
w  x.  ( normh `  ( y  -h  z
) ) )  e.  RR )
2725, 26sylan2 460 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  ( y  e.  A  /\  z  e.  B
) )  ->  (
w  x.  ( normh `  ( y  -h  z
) ) )  e.  RR )
2827anassrs 629 . . . . . . . . . . . . . . . . 17  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR )
2928adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR )
30 normge0 21721 . . . . . . . . . . . . . . . . . . 19  |-  ( (
-u 1  .h  z
)  e.  ~H  ->  0  <_  ( normh `  ( -u 1  .h  z ) ) )
3113, 30syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  B  ->  0  <_  ( normh `  ( -u 1  .h  z ) ) )
32 addge01 9300 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  RR  /\  ( normh `  ( -u 1  .h  z ) )  e.  RR )  ->  (
0  <_  ( normh `  ( -u 1  .h  z ) )  <->  1  <_  ( 1  +  ( normh `  ( -u 1  .h  z ) ) ) ) )
337, 32mpan 651 . . . . . . . . . . . . . . . . . . 19  |-  ( (
normh `  ( -u 1  .h  z ) )  e.  RR  ->  ( 0  <_  ( normh `  ( -u 1  .h  z ) )  <->  1  <_  (
1  +  ( normh `  ( -u 1  .h  z ) ) ) ) )
3433biimpa 470 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( normh `  ( -u 1  .h  z ) )  e.  RR  /\  0  <_ 
( normh `  ( -u 1  .h  z ) ) )  ->  1  <_  (
1  +  ( normh `  ( -u 1  .h  z ) ) ) )
3515, 31, 34syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  B  ->  1  <_  ( 1  +  (
normh `  ( -u 1  .h  z ) ) ) )
3635ad2antlr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  1  <_  ( 1  +  ( normh `  ( -u 1  .h  z ) ) ) )
37 shmulcl 21813 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  z  e.  B )  ->  ( -u 1  .h  z )  e.  B
)
3810, 9, 37mp3an12 1267 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  B  ->  ( -u 1  .h  z )  e.  B )
39 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  ( -u 1  .h  z )  ->  ( normh `  v )  =  ( normh `  ( -u 1  .h  z ) ) )
4039oveq2d 5890 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  ( -u 1  .h  z )  ->  (
( normh `  y )  +  ( normh `  v
) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
41 oveq2 5882 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  =  ( -u 1  .h  z )  ->  (
y  +h  v )  =  ( y  +h  ( -u 1  .h  z ) ) )
4241fveq2d 5545 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  =  ( -u 1  .h  z )  ->  ( normh `  ( y  +h  v ) )  =  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) )
4342oveq2d 5890 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  =  ( -u 1  .h  z )  ->  (
w  x.  ( normh `  ( y  +h  v
) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
4440, 43breq12d 4052 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  =  ( -u 1  .h  z )  ->  (
( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  <-> 
( ( normh `  y
)  +  ( normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) ) )
4544rspcv 2893 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
-u 1  .h  z
)  e.  B  -> 
( A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  ->  ( ( normh `  y )  +  (
normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) ) )
4638, 45syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  B  ->  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  ->  ( ( normh `  y )  +  (
normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) ) )
4746imp 418 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  B  /\  A. v  e.  B  ( ( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) ) )  ->  ( ( normh `  y )  +  (
normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
4847ad2ant2lr 728 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) )  <_  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
49 oveq1 5881 . . . . . . . . . . . . . . . . . . 19  |-  ( 1  =  ( normh `  y
)  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
5049eqcoms 2299 . . . . . . . . . . . . . . . . . 18  |-  ( (
normh `  y )  =  1  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
5150ad2antll 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  =  ( ( normh `  y )  +  ( normh `  ( -u 1  .h  z ) ) ) )
52 hvsubval 21612 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  -h  z
)  =  ( y  +h  ( -u 1  .h  z ) ) )
5321, 11, 52syl2an 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( y  -h  z
)  =  ( y  +h  ( -u 1  .h  z ) ) )
5453fveq2d 5545 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  =  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) )
5554oveq2d 5890 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
5655adantll 694 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
5756adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( w  x.  ( normh `  ( y  -h  z ) ) )  =  ( w  x.  ( normh `  ( y  +h  ( -u 1  .h  z ) ) ) ) )
5848, 51, 573brtr4d 4069 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  +  ( normh `  ( -u 1  .h  z ) ) )  <_  (
w  x.  ( normh `  ( y  -h  z
) ) ) )
598, 19, 29, 36, 58letrd 8989 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  1  <_  ( w  x.  ( normh `  ( y  -h  z
) ) ) )
6059ex 423 . . . . . . . . . . . . . 14  |-  ( ( ( w  e.  RR  /\  y  e.  A )  /\  z  e.  B
)  ->  ( ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 )  ->  1  <_  (
w  x.  ( normh `  ( y  -h  z
) ) ) ) )
6160adantllr 699 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
( A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 )  ->  1  <_  (
w  x.  ( normh `  ( y  -h  z
) ) ) ) )
62 simplll 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  w  e.  RR )
6323adantll 694 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
y  -h  z )  e.  ~H )
6463, 24syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  RR )
6562, 64, 26syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
w  x.  ( normh `  ( y  -h  z
) ) )  e.  RR )
66 simpllr 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  0  <  w )
67 lediv1 9637 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR  /\  (
w  e.  RR  /\  0  <  w ) )  ->  ( 1  <_ 
( w  x.  ( normh `  ( y  -h  z ) ) )  <-> 
( 1  /  w
)  <_  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w ) ) )
687, 67mp3an1 1264 . . . . . . . . . . . . . 14  |-  ( ( ( w  x.  ( normh `  ( y  -h  z ) ) )  e.  RR  /\  (
w  e.  RR  /\  0  <  w ) )  ->  ( 1  <_ 
( w  x.  ( normh `  ( y  -h  z ) ) )  <-> 
( 1  /  w
)  <_  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w ) ) )
6965, 62, 66, 68syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
1  <_  ( w  x.  ( normh `  ( y  -h  z ) ) )  <-> 
( 1  /  w
)  <_  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w ) ) )
7061, 69sylibd 205 . . . . . . . . . . . 12  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
( A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 )  ->  ( 1  /  w )  <_  (
( w  x.  ( normh `  ( y  -h  z ) ) )  /  w ) ) )
7170imp 418 . . . . . . . . . . 11  |-  ( ( ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  /  w )  <_ 
( ( w  x.  ( normh `  ( y  -h  z ) ) )  /  w ) )
7225recnd 8877 . . . . . . . . . . . . . 14  |-  ( ( y  e.  A  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  CC )
7372adantll 694 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  ( normh `  ( y  -h  z ) )  e.  CC )
74 recn 8843 . . . . . . . . . . . . . 14  |-  ( w  e.  RR  ->  w  e.  CC )
7574ad3antrrr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  w  e.  CC )
761ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  w  =/=  0 )
7773, 75, 76divcan3d 9557 . . . . . . . . . . . 12  |-  ( ( ( ( w  e.  RR  /\  0  < 
w )  /\  y  e.  A )  /\  z  e.  B )  ->  (
( w  x.  ( normh `  ( y  -h  z ) ) )  /  w )  =  ( normh `  ( y  -h  z ) ) )
7877adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( (
w  x.  ( normh `  ( y  -h  z
) ) )  /  w )  =  (
normh `  ( y  -h  z ) ) )
7971, 78breqtrd 4063 . . . . . . . . . 10  |-  ( ( ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A )  /\  z  e.  B )  /\  ( A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) )  /\  ( normh `  y
)  =  1 ) )  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) )
8079exp43 595 . . . . . . . . 9  |-  ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A
)  ->  ( z  e.  B  ->  ( A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) )  -> 
( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) ) )
8180com23 72 . . . . . . . 8  |-  ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A
)  ->  ( A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) )  -> 
( z  e.  B  ->  ( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) ) )
8281ralrimdv 2645 . . . . . . 7  |-  ( ( ( w  e.  RR  /\  0  <  w )  /\  y  e.  A
)  ->  ( A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) )  ->  A. z  e.  B  ( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) )
8382ralimdva 2634 . . . . . 6  |-  ( ( w  e.  RR  /\  0  <  w )  -> 
( A. y  e.  A  A. v  e.  B  ( ( normh `  y )  +  (
normh `  v ) )  <_  ( w  x.  ( normh `  ( y  +h  v ) ) )  ->  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  -> 
( 1  /  w
)  <_  ( normh `  ( y  -h  z
) ) ) ) )
8483impr 602 . . . . 5  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) )
854, 6, 84jca32 521 . . . 4  |-  ( ( w  e.  RR  /\  ( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) ) )  ->  (
( 1  /  w
)  e.  RR  /\  ( 0  <  (
1  /  w )  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_  ( normh `  ( y  -h  z ) ) ) ) ) )
8685ex 423 . . 3  |-  ( w  e.  RR  ->  (
( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) )  ->  ( (
1  /  w )  e.  RR  /\  (
0  <  ( 1  /  w )  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  =  1  ->  (
1  /  w )  <_  ( normh `  (
y  -h  z ) ) ) ) ) ) )
87 breq2 4043 . . . . 5  |-  ( x  =  ( 1  /  w )  ->  (
0  <  x  <->  0  <  ( 1  /  w ) ) )
88 breq1 4042 . . . . . . 7  |-  ( x  =  ( 1  /  w )  ->  (
x  <_  ( normh `  ( y  -h  z
) )  <->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) )
8988imbi2d 307 . . . . . 6  |-  ( x  =  ( 1  /  w )  ->  (
( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) )  <->  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) ) )
90892ralbidv 2598 . . . . 5  |-  ( x  =  ( 1  /  w )  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) )  <->  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_ 
( normh `  ( y  -h  z ) ) ) ) )
9187, 90anbi12d 691 . . . 4  |-  ( x  =  ( 1  /  w )  ->  (
( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) ) )  <->  ( 0  <  ( 1  /  w )  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  =  1  ->  (
1  /  w )  <_  ( normh `  (
y  -h  z ) ) ) ) ) )
9291rspcev 2897 . . 3  |-  ( ( ( 1  /  w
)  e.  RR  /\  ( 0  <  (
1  /  w )  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  ( 1  /  w )  <_  ( normh `  ( y  -h  z ) ) ) ) )  ->  E. x  e.  RR  ( 0  < 
x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  x  <_  (
normh `  ( y  -h  z ) ) ) ) )
9386, 92syl6 29 . 2  |-  ( w  e.  RR  ->  (
( 0  <  w  /\  A. y  e.  A  A. v  e.  B  ( ( normh `  y
)  +  ( normh `  v ) )  <_ 
( w  x.  ( normh `  ( y  +h  v ) ) ) )  ->  E. x  e.  RR  ( 0  < 
x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y )  =  1  ->  x  <_  (
normh `  ( y  -h  z ) ) ) ) ) )
9493rexlimiv 2674 1  |-  ( E. w  e.  RR  (
0  <  w  /\  A. y  e.  A  A. v  e.  B  (
( normh `  y )  +  ( normh `  v
) )  <_  (
w  x.  ( normh `  ( y  +h  v
) ) ) )  ->  E. x  e.  RR  ( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  =  1  ->  x  <_  ( normh `  (
y  -h  z ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884   -ucneg 9054    / cdiv 9439   ~Hchil 21515    +h cva 21516    .h csm 21517   normhcno 21519    -h cmv 21521   SHcsh 21524
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-hilex 21595  ax-hfvadd 21596  ax-hv0cl 21599  ax-hfvmul 21601  ax-hvmul0 21606  ax-hfi 21674  ax-his1 21677  ax-his3 21679  ax-his4 21680
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-hnorm 21564  df-hvsub 21567  df-sh 21802
  Copyright terms: Public domain W3C validator