HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem1 Unicode version

Theorem cdj3lem1 23448
Description: A property of " A and  B are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj1.1  |-  A  e.  SH
cdj1.2  |-  B  e.  SH
Assertion
Ref Expression
cdj3lem1  |-  ( E. x  e.  RR  (
0  <  x  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( A  i^i  B )  =  0H )
Distinct variable groups:    x, y,
z, A    x, B, y, z

Proof of Theorem cdj3lem1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elin 3446 . . . . . . . . . . . 12  |-  ( w  e.  ( A  i^i  B )  <->  ( w  e.  A  /\  w  e.  B ) )
2 cdj1.2 . . . . . . . . . . . . . 14  |-  B  e.  SH
3 neg1cn 9960 . . . . . . . . . . . . . 14  |-  -u 1  e.  CC
4 shmulcl 22231 . . . . . . . . . . . . . 14  |-  ( ( B  e.  SH  /\  -u 1  e.  CC  /\  w  e.  B )  ->  ( -u 1  .h  w )  e.  B
)
52, 3, 4mp3an12 1268 . . . . . . . . . . . . 13  |-  ( w  e.  B  ->  ( -u 1  .h  w )  e.  B )
65anim2i 552 . . . . . . . . . . . 12  |-  ( ( w  e.  A  /\  w  e.  B )  ->  ( w  e.  A  /\  ( -u 1  .h  w )  e.  B
) )
71, 6sylbi 187 . . . . . . . . . . 11  |-  ( w  e.  ( A  i^i  B )  ->  ( w  e.  A  /\  ( -u 1  .h  w )  e.  B ) )
8 fveq2 5632 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  ( normh `  y )  =  ( normh `  w )
)
98oveq1d 5996 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
( normh `  y )  +  ( normh `  z
) )  =  ( ( normh `  w )  +  ( normh `  z
) ) )
10 oveq1 5988 . . . . . . . . . . . . . . 15  |-  ( y  =  w  ->  (
y  +h  z )  =  ( w  +h  z ) )
1110fveq2d 5636 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  ( normh `  ( y  +h  z ) )  =  ( normh `  ( w  +h  z ) ) )
1211oveq2d 5997 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
x  x.  ( normh `  ( y  +h  z
) ) )  =  ( x  x.  ( normh `  ( w  +h  z ) ) ) )
139, 12breq12d 4138 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) )  <-> 
( ( normh `  w
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( w  +h  z ) ) ) ) )
14 fveq2 5632 . . . . . . . . . . . . . 14  |-  ( z  =  ( -u 1  .h  w )  ->  ( normh `  z )  =  ( normh `  ( -u 1  .h  w ) ) )
1514oveq2d 5997 . . . . . . . . . . . . 13  |-  ( z  =  ( -u 1  .h  w )  ->  (
( normh `  w )  +  ( normh `  z
) )  =  ( ( normh `  w )  +  ( normh `  ( -u 1  .h  w ) ) ) )
16 oveq2 5989 . . . . . . . . . . . . . . 15  |-  ( z  =  ( -u 1  .h  w )  ->  (
w  +h  z )  =  ( w  +h  ( -u 1  .h  w
) ) )
1716fveq2d 5636 . . . . . . . . . . . . . 14  |-  ( z  =  ( -u 1  .h  w )  ->  ( normh `  ( w  +h  z ) )  =  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )
1817oveq2d 5997 . . . . . . . . . . . . 13  |-  ( z  =  ( -u 1  .h  w )  ->  (
x  x.  ( normh `  ( w  +h  z
) ) )  =  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w
) ) ) ) )
1915, 18breq12d 4138 . . . . . . . . . . . 12  |-  ( z  =  ( -u 1  .h  w )  ->  (
( ( normh `  w
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( w  +h  z ) ) )  <-> 
( ( normh `  w
)  +  ( normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
2013, 19rspc2v 2975 . . . . . . . . . . 11  |-  ( ( w  e.  A  /\  ( -u 1  .h  w
)  e.  B )  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y )  +  ( normh `  z )
)  <_  ( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
217, 20syl 15 . . . . . . . . . 10  |-  ( w  e.  ( A  i^i  B )  ->  ( A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) )  -> 
( ( normh `  w
)  +  ( normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
2221adantl 452 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  w  e.  ( A  i^i  B ) )  -> 
( A. y  e.  A  A. z  e.  B  ( ( normh `  y )  +  (
normh `  z ) )  <_  ( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) ) ) )
23 cdj1.1 . . . . . . . . . . . 12  |-  A  e.  SH
2423, 2shincli 22375 . . . . . . . . . . 11  |-  ( A  i^i  B )  e.  SH
2524sheli 22227 . . . . . . . . . 10  |-  ( w  e.  ( A  i^i  B )  ->  w  e.  ~H )
26 normneg 22157 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  ( normh `  ( -u 1  .h  w ) )  =  ( normh `  w )
)
2726oveq2d 5997 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  +  ( normh `  ( -u 1  .h  w ) ) )  =  ( ( normh `  w )  +  ( normh `  w
) ) )
28 normcl 22138 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ~H  ->  ( normh `  w )  e.  RR )
2928recnd 9008 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  ( normh `  w )  e.  CC )
30292timesd 10103 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
2  x.  ( normh `  w ) )  =  ( ( normh `  w
)  +  ( normh `  w ) ) )
3127, 30eqtr4d 2401 . . . . . . . . . . . . 13  |-  ( w  e.  ~H  ->  (
( normh `  w )  +  ( normh `  ( -u 1  .h  w ) ) )  =  ( 2  x.  ( normh `  w ) ) )
3231adantl 452 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( normh `  w
)  +  ( normh `  ( -u 1  .h  w ) ) )  =  ( 2  x.  ( normh `  w )
) )
33 hvnegid 22040 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ~H  ->  (
w  +h  ( -u
1  .h  w ) )  =  0h )
3433fveq2d 5636 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ~H  ->  ( normh `  ( w  +h  ( -u 1  .h  w
) ) )  =  ( normh `  0h )
)
35 norm0 22141 . . . . . . . . . . . . . . . 16  |-  ( normh `  0h )  =  0
3634, 35syl6eq 2414 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  ( normh `  ( w  +h  ( -u 1  .h  w
) ) )  =  0 )
3736oveq2d 5997 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  =  ( x  x.  0 ) )
38 recn 8974 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  x  e.  CC )
3938mul01d 9158 . . . . . . . . . . . . . 14  |-  ( x  e.  RR  ->  (
x  x.  0 )  =  0 )
4037, 39sylan9eqr 2420 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w
) ) ) )  =  0 )
41 2cn 9963 . . . . . . . . . . . . . 14  |-  2  e.  CC
4241mul01i 9149 . . . . . . . . . . . . 13  |-  ( 2  x.  0 )  =  0
4340, 42syl6eqr 2416 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w
) ) ) )  =  ( 2  x.  0 ) )
4432, 43breq12d 4138 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  <->  ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 ) ) )
45 0re 8985 . . . . . . . . . . . . . . 15  |-  0  e.  RR
46 letri3 9054 . . . . . . . . . . . . . . 15  |-  ( ( ( normh `  w )  e.  RR  /\  0  e.  RR )  ->  (
( normh `  w )  =  0  <->  ( ( normh `  w )  <_ 
0  /\  0  <_  (
normh `  w ) ) ) )
4728, 45, 46sylancl 643 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  =  0  <->  ( ( normh `  w )  <_ 
0  /\  0  <_  (
normh `  w ) ) ) )
48 normge0 22139 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~H  ->  0  <_  ( normh `  w )
)
4948biantrud 493 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  <_  0  <->  ( ( normh `  w )  <_  0  /\  0  <_  ( normh `  w ) ) ) )
50 2re 9962 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR
51 2pos 9975 . . . . . . . . . . . . . . . . 17  |-  0  <  2
5250, 51pm3.2i 441 . . . . . . . . . . . . . . . 16  |-  ( 2  e.  RR  /\  0  <  2 )
53 lemul2 9756 . . . . . . . . . . . . . . . 16  |-  ( ( ( normh `  w )  e.  RR  /\  0  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( normh `  w
)  <_  0  <->  ( 2  x.  ( normh `  w
) )  <_  (
2  x.  0 ) ) )
5445, 52, 53mp3an23 1270 . . . . . . . . . . . . . . 15  |-  ( (
normh `  w )  e.  RR  ->  ( ( normh `  w )  <_ 
0  <->  ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 ) ) )
5528, 54syl 15 . . . . . . . . . . . . . 14  |-  ( w  e.  ~H  ->  (
( normh `  w )  <_  0  <->  ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 ) ) )
5647, 49, 553bitr2rd 273 . . . . . . . . . . . . 13  |-  ( w  e.  ~H  ->  (
( 2  x.  ( normh `  w ) )  <_  ( 2  x.  0 )  <->  ( normh `  w )  =  0 ) )
57 norm-i 22142 . . . . . . . . . . . . 13  |-  ( w  e.  ~H  ->  (
( normh `  w )  =  0  <->  w  =  0h ) )
5856, 57bitrd 244 . . . . . . . . . . . 12  |-  ( w  e.  ~H  ->  (
( 2  x.  ( normh `  w ) )  <_  ( 2  x.  0 )  <->  w  =  0h ) )
5958adantl 452 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( 2  x.  ( normh `  w )
)  <_  ( 2  x.  0 )  <->  w  =  0h ) )
6044, 59bitrd 244 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  w  e.  ~H )  ->  ( ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  <->  w  =  0h ) )
6125, 60sylan2 460 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  w  e.  ( A  i^i  B ) )  -> 
( ( ( normh `  w )  +  (
normh `  ( -u 1  .h  w ) ) )  <_  ( x  x.  ( normh `  ( w  +h  ( -u 1  .h  w ) ) ) )  <->  w  =  0h ) )
6222, 61sylibd 205 . . . . . . . 8  |-  ( ( x  e.  RR  /\  w  e.  ( A  i^i  B ) )  -> 
( A. y  e.  A  A. z  e.  B  ( ( normh `  y )  +  (
normh `  z ) )  <_  ( x  x.  ( normh `  ( y  +h  z ) ) )  ->  w  =  0h ) )
6362impancom 427 . . . . . . 7  |-  ( ( x  e.  RR  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( w  e.  ( A  i^i  B
)  ->  w  =  0h ) )
64 elch0 22267 . . . . . . 7  |-  ( w  e.  0H  <->  w  =  0h )
6563, 64syl6ibr 218 . . . . . 6  |-  ( ( x  e.  RR  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( w  e.  ( A  i^i  B
)  ->  w  e.  0H ) )
6665ssrdv 3271 . . . . 5  |-  ( ( x  e.  RR  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( A  i^i  B )  C_  0H )
6766ex 423 . . . 4  |-  ( x  e.  RR  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( A  i^i  B )  C_  0H )
)
68 shle0 22455 . . . . 5  |-  ( ( A  i^i  B )  e.  SH  ->  (
( A  i^i  B
)  C_  0H  <->  ( A  i^i  B )  =  0H ) )
6924, 68ax-mp 8 . . . 4  |-  ( ( A  i^i  B ) 
C_  0H  <->  ( A  i^i  B )  =  0H )
7067, 69syl6ib 217 . . 3  |-  ( x  e.  RR  ->  ( A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) )  ->  ( A  i^i  B )  =  0H ) )
7170adantld 453 . 2  |-  ( x  e.  RR  ->  (
( 0  <  x  /\  A. y  e.  A  A. z  e.  B  ( ( normh `  y
)  +  ( normh `  z ) )  <_ 
( x  x.  ( normh `  ( y  +h  z ) ) ) )  ->  ( A  i^i  B )  =  0H ) )
7271rexlimiv 2746 1  |-  ( E. x  e.  RR  (
0  <  x  /\  A. y  e.  A  A. z  e.  B  (
( normh `  y )  +  ( normh `  z
) )  <_  (
x  x.  ( normh `  ( y  +h  z
) ) ) )  ->  ( A  i^i  B )  =  0H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715   A.wral 2628   E.wrex 2629    i^i cin 3237    C_ wss 3238   class class class wbr 4125   ` cfv 5358  (class class class)co 5981   CCcc 8882   RRcr 8883   0cc0 8884   1c1 8885    + caddc 8887    x. cmul 8889    < clt 9014    <_ cle 9015   -ucneg 9185   2c2 9942   ~Hchil 21933    +h cva 21934    .h csm 21935   normhcno 21937   0hc0v 21938   SHcsh 21942   0Hc0h 21949
This theorem is referenced by:  cdj3lem2b  23451  cdj3i  23455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961  ax-pre-sup 8962  ax-hilex 22013  ax-hfvadd 22014  ax-hvcom 22015  ax-hv0cl 22017  ax-hvaddid 22018  ax-hfvmul 22019  ax-hvmulid 22020  ax-hvmulass 22021  ax-hvdistr1 22022  ax-hvdistr2 22023  ax-hvmul0 22024  ax-hfi 22092  ax-his1 22095  ax-his3 22097  ax-his4 22098
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-sup 7341  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-div 9571  df-nn 9894  df-2 9951  df-3 9952  df-n0 10115  df-z 10176  df-uz 10382  df-rp 10506  df-seq 11211  df-exp 11270  df-cj 11791  df-re 11792  df-im 11793  df-sqr 11927  df-abs 11928  df-hnorm 21982  df-hvsub 21985  df-sh 22220  df-ch0 22266
  Copyright terms: Public domain W3C validator