HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdj3lem3b Structured version   Unicode version

Theorem cdj3lem3b 23935
Description: Lemma for cdj3i 23936. The second-component function  T is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdj3lem2.1  |-  A  e.  SH
cdj3lem2.2  |-  B  e.  SH
cdj3lem3.3  |-  T  =  ( x  e.  ( A  +H  B ) 
|->  ( iota_ w  e.  B E. z  e.  A  x  =  ( z  +h  w ) ) )
Assertion
Ref Expression
cdj3lem3b  |-  ( E. v  e.  RR  (
0  <  v  /\  A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  ->  E. v  e.  RR  ( 0  <  v  /\  A. u  e.  ( A  +H  B ) ( normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) ) ) )
Distinct variable groups:    x, y,
z, w, v, u, A    x, B, y, z, w, v, u   
v, T, u
Allowed substitution hints:    T( x, y, z, w)

Proof of Theorem cdj3lem3b
Dummy variables  t  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdj3lem2.2 . . 3  |-  B  e.  SH
2 cdj3lem2.1 . . 3  |-  A  e.  SH
3 cdj3lem3.3 . . . 4  |-  T  =  ( x  e.  ( A  +H  B ) 
|->  ( iota_ w  e.  B E. z  e.  A  x  =  ( z  +h  w ) ) )
41, 2shscomi 22857 . . . . 5  |-  ( B  +H  A )  =  ( A  +H  B
)
51sheli 22708 . . . . . . . . 9  |-  ( w  e.  B  ->  w  e.  ~H )
62sheli 22708 . . . . . . . . 9  |-  ( z  e.  A  ->  z  e.  ~H )
7 ax-hvcom 22496 . . . . . . . . 9  |-  ( ( w  e.  ~H  /\  z  e.  ~H )  ->  ( w  +h  z
)  =  ( z  +h  w ) )
85, 6, 7syl2an 464 . . . . . . . 8  |-  ( ( w  e.  B  /\  z  e.  A )  ->  ( w  +h  z
)  =  ( z  +h  w ) )
98eqeq2d 2446 . . . . . . 7  |-  ( ( w  e.  B  /\  z  e.  A )  ->  ( x  =  ( w  +h  z )  <-> 
x  =  ( z  +h  w ) ) )
109rexbidva 2714 . . . . . 6  |-  ( w  e.  B  ->  ( E. z  e.  A  x  =  ( w  +h  z )  <->  E. z  e.  A  x  =  ( z  +h  w
) ) )
1110riotabiia 6559 . . . . 5  |-  ( iota_ w  e.  B E. z  e.  A  x  =  ( w  +h  z
) )  =  (
iota_ w  e.  B E. z  e.  A  x  =  ( z  +h  w ) )
124, 11mpteq12i 4285 . . . 4  |-  ( x  e.  ( B  +H  A )  |->  ( iota_ w  e.  B E. z  e.  A  x  =  ( w  +h  z
) ) )  =  ( x  e.  ( A  +H  B ) 
|->  ( iota_ w  e.  B E. z  e.  A  x  =  ( z  +h  w ) ) )
133, 12eqtr4i 2458 . . 3  |-  T  =  ( x  e.  ( B  +H  A ) 
|->  ( iota_ w  e.  B E. z  e.  A  x  =  ( w  +h  z ) ) )
141, 2, 13cdj3lem2b 23932 . 2  |-  ( E. v  e.  RR  (
0  <  v  /\  A. x  e.  B  A. y  e.  A  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  ->  E. v  e.  RR  ( 0  <  v  /\  A. u  e.  ( B  +H  A ) ( normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) ) ) )
15 fveq2 5720 . . . . . . . 8  |-  ( x  =  t  ->  ( normh `  x )  =  ( normh `  t )
)
1615oveq1d 6088 . . . . . . 7  |-  ( x  =  t  ->  (
( normh `  x )  +  ( normh `  y
) )  =  ( ( normh `  t )  +  ( normh `  y
) ) )
17 oveq1 6080 . . . . . . . . 9  |-  ( x  =  t  ->  (
x  +h  y )  =  ( t  +h  y ) )
1817fveq2d 5724 . . . . . . . 8  |-  ( x  =  t  ->  ( normh `  ( x  +h  y ) )  =  ( normh `  ( t  +h  y ) ) )
1918oveq2d 6089 . . . . . . 7  |-  ( x  =  t  ->  (
v  x.  ( normh `  ( x  +h  y
) ) )  =  ( v  x.  ( normh `  ( t  +h  y ) ) ) )
2016, 19breq12d 4217 . . . . . 6  |-  ( x  =  t  ->  (
( ( normh `  x
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( x  +h  y ) ) )  <-> 
( ( normh `  t
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( t  +h  y ) ) ) ) )
21 fveq2 5720 . . . . . . . 8  |-  ( y  =  h  ->  ( normh `  y )  =  ( normh `  h )
)
2221oveq2d 6089 . . . . . . 7  |-  ( y  =  h  ->  (
( normh `  t )  +  ( normh `  y
) )  =  ( ( normh `  t )  +  ( normh `  h
) ) )
23 oveq2 6081 . . . . . . . . 9  |-  ( y  =  h  ->  (
t  +h  y )  =  ( t  +h  h ) )
2423fveq2d 5724 . . . . . . . 8  |-  ( y  =  h  ->  ( normh `  ( t  +h  y ) )  =  ( normh `  ( t  +h  h ) ) )
2524oveq2d 6089 . . . . . . 7  |-  ( y  =  h  ->  (
v  x.  ( normh `  ( t  +h  y
) ) )  =  ( v  x.  ( normh `  ( t  +h  h ) ) ) )
2622, 25breq12d 4217 . . . . . 6  |-  ( y  =  h  ->  (
( ( normh `  t
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( t  +h  y ) ) )  <-> 
( ( normh `  t
)  +  ( normh `  h ) )  <_ 
( v  x.  ( normh `  ( t  +h  h ) ) ) ) )
2720, 26cbvral2v 2932 . . . . 5  |-  ( A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) )  <->  A. t  e.  A  A. h  e.  B  ( ( normh `  t )  +  ( normh `  h )
)  <_  ( v  x.  ( normh `  ( t  +h  h ) ) ) )
28 ralcom 2860 . . . . 5  |-  ( A. t  e.  A  A. h  e.  B  (
( normh `  t )  +  ( normh `  h
) )  <_  (
v  x.  ( normh `  ( t  +h  h
) ) )  <->  A. h  e.  B  A. t  e.  A  ( ( normh `  t )  +  ( normh `  h )
)  <_  ( v  x.  ( normh `  ( t  +h  h ) ) ) )
291sheli 22708 . . . . . . . . . . . 12  |-  ( x  e.  B  ->  x  e.  ~H )
30 normcl 22619 . . . . . . . . . . . 12  |-  ( x  e.  ~H  ->  ( normh `  x )  e.  RR )
3129, 30syl 16 . . . . . . . . . . 11  |-  ( x  e.  B  ->  ( normh `  x )  e.  RR )
3231recnd 9106 . . . . . . . . . 10  |-  ( x  e.  B  ->  ( normh `  x )  e.  CC )
332sheli 22708 . . . . . . . . . . . 12  |-  ( y  e.  A  ->  y  e.  ~H )
34 normcl 22619 . . . . . . . . . . . 12  |-  ( y  e.  ~H  ->  ( normh `  y )  e.  RR )
3533, 34syl 16 . . . . . . . . . . 11  |-  ( y  e.  A  ->  ( normh `  y )  e.  RR )
3635recnd 9106 . . . . . . . . . 10  |-  ( y  e.  A  ->  ( normh `  y )  e.  CC )
37 addcom 9244 . . . . . . . . . 10  |-  ( ( ( normh `  x )  e.  CC  /\  ( normh `  y )  e.  CC )  ->  ( ( normh `  x )  +  (
normh `  y ) )  =  ( ( normh `  y )  +  (
normh `  x ) ) )
3832, 36, 37syl2an 464 . . . . . . . . 9  |-  ( ( x  e.  B  /\  y  e.  A )  ->  ( ( normh `  x
)  +  ( normh `  y ) )  =  ( ( normh `  y
)  +  ( normh `  x ) ) )
39 ax-hvcom 22496 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  =  ( y  +h  x ) )
4029, 33, 39syl2an 464 . . . . . . . . . . 11  |-  ( ( x  e.  B  /\  y  e.  A )  ->  ( x  +h  y
)  =  ( y  +h  x ) )
4140fveq2d 5724 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  y  e.  A )  ->  ( normh `  ( x  +h  y ) )  =  ( normh `  ( y  +h  x ) ) )
4241oveq2d 6089 . . . . . . . . 9  |-  ( ( x  e.  B  /\  y  e.  A )  ->  ( v  x.  ( normh `  ( x  +h  y ) ) )  =  ( v  x.  ( normh `  ( y  +h  x ) ) ) )
4338, 42breq12d 4217 . . . . . . . 8  |-  ( ( x  e.  B  /\  y  e.  A )  ->  ( ( ( normh `  x )  +  (
normh `  y ) )  <_  ( v  x.  ( normh `  ( x  +h  y ) ) )  <-> 
( ( normh `  y
)  +  ( normh `  x ) )  <_ 
( v  x.  ( normh `  ( y  +h  x ) ) ) ) )
4443ralbidva 2713 . . . . . . 7  |-  ( x  e.  B  ->  ( A. y  e.  A  ( ( normh `  x
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( x  +h  y ) ) )  <->  A. y  e.  A  ( ( normh `  y
)  +  ( normh `  x ) )  <_ 
( v  x.  ( normh `  ( y  +h  x ) ) ) ) )
4544ralbiia 2729 . . . . . 6  |-  ( A. x  e.  B  A. y  e.  A  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) )  <->  A. x  e.  B  A. y  e.  A  ( ( normh `  y )  +  ( normh `  x )
)  <_  ( v  x.  ( normh `  ( y  +h  x ) ) ) )
46 fveq2 5720 . . . . . . . . 9  |-  ( x  =  h  ->  ( normh `  x )  =  ( normh `  h )
)
4746oveq2d 6089 . . . . . . . 8  |-  ( x  =  h  ->  (
( normh `  y )  +  ( normh `  x
) )  =  ( ( normh `  y )  +  ( normh `  h
) ) )
48 oveq2 6081 . . . . . . . . . 10  |-  ( x  =  h  ->  (
y  +h  x )  =  ( y  +h  h ) )
4948fveq2d 5724 . . . . . . . . 9  |-  ( x  =  h  ->  ( normh `  ( y  +h  x ) )  =  ( normh `  ( y  +h  h ) ) )
5049oveq2d 6089 . . . . . . . 8  |-  ( x  =  h  ->  (
v  x.  ( normh `  ( y  +h  x
) ) )  =  ( v  x.  ( normh `  ( y  +h  h ) ) ) )
5147, 50breq12d 4217 . . . . . . 7  |-  ( x  =  h  ->  (
( ( normh `  y
)  +  ( normh `  x ) )  <_ 
( v  x.  ( normh `  ( y  +h  x ) ) )  <-> 
( ( normh `  y
)  +  ( normh `  h ) )  <_ 
( v  x.  ( normh `  ( y  +h  h ) ) ) ) )
52 fveq2 5720 . . . . . . . . 9  |-  ( y  =  t  ->  ( normh `  y )  =  ( normh `  t )
)
5352oveq1d 6088 . . . . . . . 8  |-  ( y  =  t  ->  (
( normh `  y )  +  ( normh `  h
) )  =  ( ( normh `  t )  +  ( normh `  h
) ) )
54 oveq1 6080 . . . . . . . . . 10  |-  ( y  =  t  ->  (
y  +h  h )  =  ( t  +h  h ) )
5554fveq2d 5724 . . . . . . . . 9  |-  ( y  =  t  ->  ( normh `  ( y  +h  h ) )  =  ( normh `  ( t  +h  h ) ) )
5655oveq2d 6089 . . . . . . . 8  |-  ( y  =  t  ->  (
v  x.  ( normh `  ( y  +h  h
) ) )  =  ( v  x.  ( normh `  ( t  +h  h ) ) ) )
5753, 56breq12d 4217 . . . . . . 7  |-  ( y  =  t  ->  (
( ( normh `  y
)  +  ( normh `  h ) )  <_ 
( v  x.  ( normh `  ( y  +h  h ) ) )  <-> 
( ( normh `  t
)  +  ( normh `  h ) )  <_ 
( v  x.  ( normh `  ( t  +h  h ) ) ) ) )
5851, 57cbvral2v 2932 . . . . . 6  |-  ( A. x  e.  B  A. y  e.  A  (
( normh `  y )  +  ( normh `  x
) )  <_  (
v  x.  ( normh `  ( y  +h  x
) ) )  <->  A. h  e.  B  A. t  e.  A  ( ( normh `  t )  +  ( normh `  h )
)  <_  ( v  x.  ( normh `  ( t  +h  h ) ) ) )
5945, 58bitr2i 242 . . . . 5  |-  ( A. h  e.  B  A. t  e.  A  (
( normh `  t )  +  ( normh `  h
) )  <_  (
v  x.  ( normh `  ( t  +h  h
) ) )  <->  A. x  e.  B  A. y  e.  A  ( ( normh `  x )  +  ( normh `  y )
)  <_  ( v  x.  ( normh `  ( x  +h  y ) ) ) )
6027, 28, 593bitri 263 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) )  <->  A. x  e.  B  A. y  e.  A  ( ( normh `  x )  +  ( normh `  y )
)  <_  ( v  x.  ( normh `  ( x  +h  y ) ) ) )
6160anbi2i 676 . . 3  |-  ( ( 0  <  v  /\  A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  <-> 
( 0  <  v  /\  A. x  e.  B  A. y  e.  A  ( ( normh `  x
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( x  +h  y ) ) ) ) )
6261rexbii 2722 . 2  |-  ( E. v  e.  RR  (
0  <  v  /\  A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  <->  E. v  e.  RR  ( 0  <  v  /\  A. x  e.  B  A. y  e.  A  ( ( normh `  x
)  +  ( normh `  y ) )  <_ 
( v  x.  ( normh `  ( x  +h  y ) ) ) ) )
632, 1shscomi 22857 . . . . 5  |-  ( A  +H  B )  =  ( B  +H  A
)
6463raleqi 2900 . . . 4  |-  ( A. u  e.  ( A  +H  B ) ( normh `  ( T `  u
) )  <_  (
v  x.  ( normh `  u ) )  <->  A. u  e.  ( B  +H  A
) ( normh `  ( T `  u )
)  <_  ( v  x.  ( normh `  u )
) )
6564anbi2i 676 . . 3  |-  ( ( 0  <  v  /\  A. u  e.  ( A  +H  B ) (
normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) ) )  <->  ( 0  < 
v  /\  A. u  e.  ( B  +H  A
) ( normh `  ( T `  u )
)  <_  ( v  x.  ( normh `  u )
) ) )
6665rexbii 2722 . 2  |-  ( E. v  e.  RR  (
0  <  v  /\  A. u  e.  ( A  +H  B ) (
normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) ) )  <->  E. v  e.  RR  ( 0  <  v  /\  A. u  e.  ( B  +H  A ) ( normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) ) ) )
6714, 62, 663imtr4i 258 1  |-  ( E. v  e.  RR  (
0  <  v  /\  A. x  e.  A  A. y  e.  B  (
( normh `  x )  +  ( normh `  y
) )  <_  (
v  x.  ( normh `  ( x  +h  y
) ) ) )  ->  E. v  e.  RR  ( 0  <  v  /\  A. u  e.  ( A  +H  B ) ( normh `  ( T `  u ) )  <_ 
( v  x.  ( normh `  u ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   iota_crio 6534   CCcc 8980   RRcr 8981   0cc0 8982    + caddc 8985    x. cmul 8987    < clt 9112    <_ cle 9113   ~Hchil 22414    +h cva 22415   normhcno 22418   SHcsh 22423    +H cph 22426
This theorem is referenced by:  cdj3i  23936
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-hilex 22494  ax-hfvadd 22495  ax-hvcom 22496  ax-hvass 22497  ax-hv0cl 22498  ax-hvaddid 22499  ax-hfvmul 22500  ax-hvmulid 22501  ax-hvmulass 22502  ax-hvdistr1 22503  ax-hvdistr2 22504  ax-hvmul0 22505  ax-hfi 22573  ax-his1 22576  ax-his3 22578  ax-his4 22579
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-grpo 21771  df-ablo 21862  df-hnorm 22463  df-hvsub 22466  df-sh 22701  df-ch0 22747  df-shs 22802
  Copyright terms: Public domain W3C validator