Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlema2N Structured version   Unicode version

Theorem cdlema2N 30526
Description: A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 9-May-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlema2.b  |-  B  =  ( Base `  K
)
cdlema2.l  |-  .<_  =  ( le `  K )
cdlema2.j  |-  .\/  =  ( join `  K )
cdlema2.m  |-  ./\  =  ( meet `  K )
cdlema2.z  |-  .0.  =  ( 0. `  K )
cdlema2.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdlema2N  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  -> 
( R  ./\  X
)  =  .0.  )

Proof of Theorem cdlema2N
StepHypRef Expression
1 simp3ll 1028 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  R  =/=  P )
2 simp3rl 1030 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  P  .<_  X )
3 simp3rr 1031 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  -.  Q  .<_  X )
4 simp3lr 1029 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  R  .<_  ( P  .\/  Q ) )
52, 3, 43jca 1134 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  -> 
( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q ) ) )
6 cdlema2.b . . . . . 6  |-  B  =  ( Base `  K
)
7 cdlema2.l . . . . . 6  |-  .<_  =  ( le `  K )
8 cdlema2.j . . . . . 6  |-  .\/  =  ( join `  K )
9 cdlema2.a . . . . . 6  |-  A  =  ( Atoms `  K )
106, 7, 8, 9exatleN 30138 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( P  .<_  X  /\  -.  Q  .<_  X  /\  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  .<_  X  <->  R  =  P ) )
115, 10syld3an3 1229 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  -> 
( R  .<_  X  <->  R  =  P ) )
1211necon3bbid 2632 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  -> 
( -.  R  .<_  X  <-> 
R  =/=  P ) )
131, 12mpbird 224 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  -.  R  .<_  X )
14 simp1l 981 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  K  e.  HL )
15 hlatl 30095 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
1614, 15syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  K  e.  AtLat )
17 simp23 992 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  R  e.  A )
18 simp1r 982 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  ->  X  e.  B )
19 cdlema2.m . . . 4  |-  ./\  =  ( meet `  K )
20 cdlema2.z . . . 4  |-  .0.  =  ( 0. `  K )
216, 7, 19, 20, 9atnle 30052 . . 3  |-  ( ( K  e.  AtLat  /\  R  e.  A  /\  X  e.  B )  ->  ( -.  R  .<_  X  <->  ( R  ./\ 
X )  =  .0.  ) )
2216, 17, 18, 21syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  -> 
( -.  R  .<_  X  <-> 
( R  ./\  X
)  =  .0.  )
)
2313, 22mpbid 202 1  |-  ( ( ( K  e.  HL  /\  X  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  (
( R  =/=  P  /\  R  .<_  ( P 
.\/  Q ) )  /\  ( P  .<_  X  /\  -.  Q  .<_  X ) ) )  -> 
( R  ./\  X
)  =  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   meetcmee 14394   0.cp0 14458   Atomscatm 29998   AtLatcal 29999   HLchlt 30085
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-lat 14467  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086
  Copyright terms: Public domain W3C validator