Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb Unicode version

Theorem cdlemb 29113
Description: Given two atoms not less than or equal to an element covered by 1, there is a third. Lemma B in [Crawley] p. 112. (Contributed by NM, 8-May-2012.)
Hypotheses
Ref Expression
cdlemb.b  |-  B  =  ( Base `  K
)
cdlemb.l  |-  .<_  =  ( le `  K )
cdlemb.j  |-  .\/  =  ( join `  K )
cdlemb.u  |-  .1.  =  ( 1. `  K )
cdlemb.c  |-  C  =  (  <o  `  K )
cdlemb.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdlemb  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
Distinct variable groups:    A, r    B, r    C, r    .\/ , r    K, r    .<_ , r    P, r    Q, r    .1. , r    X, r

Proof of Theorem cdlemb
StepHypRef Expression
1 simp11 990 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  K  e.  HL )
2 simp12 991 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  P  e.  A )
3 simp13 992 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  Q  e.  A )
4 simp2l 986 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  X  e.  B )
5 simp2r 987 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  P  =/=  Q )
6 simp31 996 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  X C  .1.  )
7 simp32 997 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  -.  P  .<_  X )
8 cdlemb.b . . . . 5  |-  B  =  ( Base `  K
)
9 cdlemb.l . . . . 5  |-  .<_  =  ( le `  K )
10 cdlemb.j . . . . 5  |-  .\/  =  ( join `  K )
11 eqid 2256 . . . . 5  |-  ( meet `  K )  =  (
meet `  K )
12 cdlemb.u . . . . 5  |-  .1.  =  ( 1. `  K )
13 cdlemb.c . . . . 5  |-  C  =  (  <o  `  K )
14 cdlemb.a . . . . 5  |-  A  =  ( Atoms `  K )
158, 9, 10, 11, 12, 13, 141cvrat 28795 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X )  e.  A )
161, 2, 3, 4, 5, 6, 7, 15syl133anc 1210 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X )  e.  A )
17 hllat 28683 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
181, 17syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  K  e.  Lat )
198, 14atbase 28609 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  B )
202, 19syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  P  e.  B )
218, 14atbase 28609 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  B )
223, 21syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  Q  e.  B )
238, 10latjcl 14083 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
2418, 20, 22, 23syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( P  .\/  Q
)  e.  B )
258, 9, 11latmle2 14110 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  B  /\  X  e.  B )  ->  (
( P  .\/  Q
) ( meet `  K
) X )  .<_  X )
2618, 24, 4, 25syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X )  .<_  X )
27 eqid 2256 . . . . 5  |-  ( lt
`  K )  =  ( lt `  K
)
288, 9, 27, 12, 13, 141cvratlt 28793 . . . 4  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  Q ) ( meet `  K
) X )  e.  A  /\  X  e.  B )  /\  ( X C  .1.  /\  (
( P  .\/  Q
) ( meet `  K
) X )  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X ) ( lt `  K ) X )
291, 16, 4, 6, 26, 28syl32anc 1195 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( P  .\/  Q ) ( meet `  K
) X ) ( lt `  K ) X )
308, 27, 142atlt 28758 . . 3  |-  ( ( ( K  e.  HL  /\  ( ( P  .\/  Q ) ( meet `  K
) X )  e.  A  /\  X  e.  B )  /\  (
( P  .\/  Q
) ( meet `  K
) X ) ( lt `  K ) X )  ->  E. u  e.  A  ( u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) )
311, 16, 4, 29, 30syl31anc 1190 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. u  e.  A  ( u  =/=  (
( P  .\/  Q
) ( meet `  K
) X )  /\  u ( lt `  K ) X ) )
32 simpl11 1035 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  K  e.  HL )
33 simpl12 1036 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  P  e.  A )
34 simprl 735 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  u  e.  A )
35 simpl32 1042 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  -.  P  .<_  X )
36 simprrr 744 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  u
( lt `  K
) X )
37 simpl2l 1013 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  X  e.  B )
389, 27pltle 14022 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  u  e.  A  /\  X  e.  B )  ->  ( u ( lt
`  K ) X  ->  u  .<_  X ) )
3932, 34, 37, 38syl3anc 1187 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  (
u ( lt `  K ) X  ->  u  .<_  X ) )
4036, 39mpd 16 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  u  .<_  X )
41 breq1 3966 . . . . . . . . 9  |-  ( P  =  u  ->  ( P  .<_  X  <->  u  .<_  X ) )
4240, 41syl5ibrcom 215 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  ( P  =  u  ->  P 
.<_  X ) )
4342necon3bd 2456 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  ( -.  P  .<_  X  ->  P  =/=  u ) )
4435, 43mpd 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  P  =/=  u )
459, 10, 14hlsupr 28705 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  u  e.  A )  /\  P  =/=  u
)  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) )
4632, 33, 34, 44, 45syl31anc 1190 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  E. r  e.  A  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u ) ) )
47 eqid 2256 . . . . . . . . . 10  |-  ( ( P  .\/  Q ) ( meet `  K
) X )  =  ( ( P  .\/  Q ) ( meet `  K
) X )
488, 9, 10, 12, 13, 14, 27, 11, 47cdlemblem 29112 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) )  /\  ( r  e.  A  /\  (
r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u
) ) ) )  ->  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q
) ) )
49483exp 1155 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( u  e.  A  /\  ( u  =/=  ( ( P 
.\/  Q ) (
meet `  K ) X )  /\  u
( lt `  K
) X ) )  ->  ( ( r  e.  A  /\  (
r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u
) ) )  -> 
( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) ) ) )
5049exp4a 592 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( ( u  e.  A  /\  ( u  =/=  ( ( P 
.\/  Q ) (
meet `  K ) X )  /\  u
( lt `  K
) X ) )  ->  ( r  e.  A  ->  ( (
r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P  .\/  u
) )  ->  ( -.  r  .<_  X  /\  -.  r  .<_  ( P 
.\/  Q ) ) ) ) ) )
5150imp 420 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  (
r  e.  A  -> 
( ( r  =/= 
P  /\  r  =/=  u  /\  r  .<_  ( P 
.\/  u ) )  ->  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q
) ) ) ) )
5251reximdvai 2624 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  ( E. r  e.  A  ( r  =/=  P  /\  r  =/=  u  /\  r  .<_  ( P 
.\/  u ) )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) ) )
5346, 52mpd 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q )  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  /\  ( u  e.  A  /\  (
u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X ) ) )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
5453exp32 591 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( u  e.  A  ->  ( ( u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) ) ) )
5554rexlimdv 2637 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  -> 
( E. u  e.  A  ( u  =/=  ( ( P  .\/  Q ) ( meet `  K
) X )  /\  u ( lt `  K ) X )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) ) )
5631, 55mpd 16 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( X  e.  B  /\  P  =/=  Q
)  /\  ( X C  .1.  /\  -.  P  .<_  X  /\  -.  Q  .<_  X ) )  ->  E. r  e.  A  ( -.  r  .<_  X  /\  -.  r  .<_  ( P  .\/  Q ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   E.wrex 2517   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   Basecbs 13075   lecple 13142   ltcplt 14002   joincjn 14005   meetcmee 14006   1.cp1 14071   Latclat 14078    <o ccvr 28582   Atomscatm 28583   HLchlt 28670
This theorem is referenced by:  cdlemb2  29360
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671
  Copyright terms: Public domain W3C validator