![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemb2 | Unicode version |
Description: Given two atoms not under
the fiducial (reference) co-atom ![]() |
Ref | Expression |
---|---|
cdlemb2.l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemb2.j |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemb2.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
cdlemb2.h |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cdlemb2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 981 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simp2ll 1024 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | simp2rl 1026 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | simp1r 982 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | eqid 2412 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | cdlemb2.h |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | lhpbase 30492 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 4, 7 | syl 16 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | simp3 959 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | eqid 2412 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | eqid 2412 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 10, 11, 6 | lhp1cvr 30493 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | 3ad2ant1 978 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | simp2lr 1025 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | simp2rr 1027 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | cdlemb2.l |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | cdlemb2.j |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
18 | cdlemb2.a |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 5, 16, 17, 10, 11, 18 | cdlemb 30288 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 1, 2, 3, 8, 9, 13, 14, 15, 19 | syl323anc 1214 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: cdlemd4 30695 cdlemd9 30700 cdleme25a 30847 cdleme25c 30849 cdleme25dN 30850 cdleme26ee 30854 cdlemefs32sn1aw 30908 cdleme43fsv1snlem 30914 cdleme41sn3a 30927 cdleme40m 30961 cdleme40n 30962 cdleme17d3 30990 cdlemeg46gfre 31026 cdleme50trn2 31045 cdlemb3 31100 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-13 1723 ax-14 1725 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2393 ax-rep 4288 ax-sep 4298 ax-nul 4306 ax-pow 4345 ax-pr 4371 ax-un 4668 |
This theorem depends on definitions: df-bi 178 df-or 360 df-an 361 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-eu 2266 df-mo 2267 df-clab 2399 df-cleq 2405 df-clel 2408 df-nfc 2537 df-ne 2577 df-nel 2578 df-ral 2679 df-rex 2680 df-reu 2681 df-rab 2683 df-v 2926 df-sbc 3130 df-csb 3220 df-dif 3291 df-un 3293 df-in 3295 df-ss 3302 df-nul 3597 df-if 3708 df-pw 3769 df-sn 3788 df-pr 3789 df-op 3791 df-uni 3984 df-iun 4063 df-br 4181 df-opab 4235 df-mpt 4236 df-id 4466 df-xp 4851 df-rel 4852 df-cnv 4853 df-co 4854 df-dm 4855 df-rn 4856 df-res 4857 df-ima 4858 df-iota 5385 df-fun 5423 df-fn 5424 df-f 5425 df-f1 5426 df-fo 5427 df-f1o 5428 df-fv 5429 df-ov 6051 df-oprab 6052 df-mpt2 6053 df-1st 6316 df-2nd 6317 df-undef 6510 df-riota 6516 df-poset 14366 df-plt 14378 df-lub 14394 df-glb 14395 df-join 14396 df-meet 14397 df-p0 14431 df-p1 14432 df-lat 14438 df-clat 14500 df-oposet 29671 df-ol 29673 df-oml 29674 df-covers 29761 df-ats 29762 df-atl 29793 df-cvlat 29817 df-hlat 29846 df-lhyp 30482 |
Copyright terms: Public domain | W3C validator |