Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemb3 Unicode version

Theorem cdlemb3 30062
Description: Given two atoms not under the fiducial co-atom  W, there is a third. Lemma B in [Crawley] p. 112. TODO: Is there a simpler more direct proof, that could be placed earlier e.g. near lhpexle 29461? Then replace cdlemb2 29497 with it. This is a more general version of cdlemb2 29497 without  P  =/=  Q condition. (Contributed by NM, 27-Apr-2013.)
Hypotheses
Ref Expression
cdlemg5.l  |-  .<_  =  ( le `  K )
cdlemg5.j  |-  .\/  =  ( join `  K )
cdlemg5.a  |-  A  =  ( Atoms `  K )
cdlemg5.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdlemb3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) )
Distinct variable groups:    A, r    H, r    K, r    .<_ , r    P, r    W, r    .\/ , r    Q, r

Proof of Theorem cdlemb3
StepHypRef Expression
1 simpl1 960 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl2 961 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 cdlemg5.l . . . . 5  |-  .<_  =  ( le `  K )
4 cdlemg5.j . . . . 5  |-  .\/  =  ( join `  K )
5 cdlemg5.a . . . . 5  |-  A  =  ( Atoms `  K )
6 cdlemg5.h . . . . 5  |-  H  =  ( LHyp `  K
)
73, 4, 5, 6cdlemg5 30061 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  E. r  e.  A  ( P  =/=  r  /\  -.  r  .<_  W ) )
81, 2, 7syl2anc 644 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q )  ->  E. r  e.  A  ( P  =/=  r  /\  -.  r  .<_  W ) )
9 ancom 439 . . . . . 6  |-  ( ( P  =/=  r  /\  -.  r  .<_  W )  <-> 
( -.  r  .<_  W  /\  P  =/=  r
) )
10 eqcom 2286 . . . . . . . . 9  |-  ( P  =  r  <->  r  =  P )
11 simp2 958 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  P  =  Q )
1211oveq2d 5835 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  ( P  .\/  P
)  =  ( P 
.\/  Q ) )
13 simp11l 1068 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  K  e.  HL )
14 simp12l 1070 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  P  e.  A )
154, 5hlatjidm 28825 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  P  e.  A )  ->  ( P  .\/  P
)  =  P )
1613, 14, 15syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  ( P  .\/  P
)  =  P )
1712, 16eqtr3d 2318 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  ( P  .\/  Q
)  =  P )
1817breq2d 4036 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  ( r  .<_  ( P 
.\/  Q )  <->  r  .<_  P ) )
19 hlatl 28817 . . . . . . . . . . . 12  |-  ( K  e.  HL  ->  K  e.  AtLat )
2013, 19syl 17 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  K  e.  AtLat )
21 simp3 959 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  r  e.  A )
223, 5atcmp 28768 . . . . . . . . . . 11  |-  ( ( K  e.  AtLat  /\  r  e.  A  /\  P  e.  A )  ->  (
r  .<_  P  <->  r  =  P ) )
2320, 21, 14, 22syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  ( r  .<_  P  <->  r  =  P ) )
2418, 23bitr2d 247 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  ( r  =  P  <-> 
r  .<_  ( P  .\/  Q ) ) )
2510, 24syl5bb 250 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  ( P  =  r  <-> 
r  .<_  ( P  .\/  Q ) ) )
2625necon3abid 2480 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  ( P  =/=  r  <->  -.  r  .<_  ( P  .\/  Q ) ) )
2726anbi2d 686 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  ( ( -.  r  .<_  W  /\  P  =/=  r )  <->  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) ) )
289, 27syl5bb 250 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q  /\  r  e.  A )  ->  ( ( P  =/=  r  /\  -.  r  .<_  W )  <->  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) ) )
29283expa 1153 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q )  /\  r  e.  A
)  ->  ( ( P  =/=  r  /\  -.  r  .<_  W )  <->  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) ) )
3029rexbidva 2561 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q )  ->  ( E. r  e.  A  ( P  =/=  r  /\  -.  r  .<_  W )  <->  E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) ) )
318, 30mpbid 203 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =  Q )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) )
32 simpl1 960 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  -> 
( K  e.  HL  /\  W  e.  H ) )
33 simpl2 961 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
34 simpl3 962 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
35 simpr 449 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  ->  P  =/=  Q )
363, 4, 5, 6cdlemb2 29497 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) )
3732, 33, 34, 35, 36syl121anc 1189 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) )
3831, 37pm2.61dane 2525 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  Q ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2447   E.wrex 2545   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   lecple 13209   joincjn 14072   Atomscatm 28720   AtLatcal 28721   HLchlt 28807   LHypclh 29440
This theorem is referenced by:  cdlemg6e  30078
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-lhyp 29444
  Copyright terms: Public domain W3C validator