Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc Unicode version

Theorem cdlemc 30683
Description: Lemma C in [Crawley] p. 113. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
cdlemc3.l  |-  .<_  =  ( le `  K )
cdlemc3.j  |-  .\/  =  ( join `  K )
cdlemc3.m  |-  ./\  =  ( meet `  K )
cdlemc3.a  |-  A  =  ( Atoms `  K )
cdlemc3.h  |-  H  =  ( LHyp `  K
)
cdlemc3.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemc3.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemc  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P  .\/  ( F `  P )
) )  ->  ( F `  Q )  =  ( ( Q 
.\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) ) )

Proof of Theorem cdlemc
StepHypRef Expression
1 simpl1 960 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P 
.\/  ( F `  P ) ) )  /\  ( F `  P )  =  P )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl2 961 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P 
.\/  ( F `  P ) ) )  /\  ( F `  P )  =  P )  ->  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
3 simpr 448 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P 
.\/  ( F `  P ) ) )  /\  ( F `  P )  =  P )  ->  ( F `  P )  =  P )
4 cdlemc3.l . . . 4  |-  .<_  =  ( le `  K )
5 cdlemc3.j . . . 4  |-  .\/  =  ( join `  K )
6 cdlemc3.m . . . 4  |-  ./\  =  ( meet `  K )
7 cdlemc3.a . . . 4  |-  A  =  ( Atoms `  K )
8 cdlemc3.h . . . 4  |-  H  =  ( LHyp `  K
)
9 cdlemc3.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
10 cdlemc3.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
114, 5, 6, 7, 8, 9, 10cdlemc6 30682 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( F `  Q )  =  ( ( Q 
.\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) ) )
121, 2, 3, 11syl3anc 1184 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P 
.\/  ( F `  P ) ) )  /\  ( F `  P )  =  P )  ->  ( F `  Q )  =  ( ( Q  .\/  ( R `  F )
)  ./\  ( ( F `  P )  .\/  ( ( P  .\/  Q )  ./\  W )
) ) )
13 simpl1 960 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P 
.\/  ( F `  P ) ) )  /\  ( F `  P )  =/=  P
)  ->  ( K  e.  HL  /\  W  e.  H ) )
14 simpl2 961 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P 
.\/  ( F `  P ) ) )  /\  ( F `  P )  =/=  P
)  ->  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
15 simpl3 962 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P 
.\/  ( F `  P ) ) )  /\  ( F `  P )  =/=  P
)  ->  -.  Q  .<_  ( P  .\/  ( F `  P )
) )
16 simpr 448 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P 
.\/  ( F `  P ) ) )  /\  ( F `  P )  =/=  P
)  ->  ( F `  P )  =/=  P
)
174, 5, 6, 7, 8, 9, 10cdlemc5 30681 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( -.  Q  .<_  ( P  .\/  ( F `  P
) )  /\  ( F `  P )  =/=  P ) )  -> 
( F `  Q
)  =  ( ( Q  .\/  ( R `
 F ) ) 
./\  ( ( F `
 P )  .\/  ( ( P  .\/  Q )  ./\  W )
) ) )
1813, 14, 15, 16, 17syl112anc 1188 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P 
.\/  ( F `  P ) ) )  /\  ( F `  P )  =/=  P
)  ->  ( F `  Q )  =  ( ( Q  .\/  ( R `  F )
)  ./\  ( ( F `  P )  .\/  ( ( P  .\/  Q )  ./\  W )
) ) )
1912, 18pm2.61dane 2649 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P  .\/  ( F `  P )
) )  ->  ( F `  Q )  =  ( ( Q 
.\/  ( R `  F ) )  ./\  ( ( F `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   class class class wbr 4176   ` cfv 5417  (class class class)co 6044   lecple 13495   joincjn 14360   meetcmee 14361   Atomscatm 29750   HLchlt 29837   LHypclh 30470   LTrncltrn 30587   trLctrl 30644
This theorem is referenced by:  cdlemd6  30689  cdlemg4e  31100  cdlemg43  31216
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-map 6983  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-p1 14428  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838  df-llines 29984  df-psubsp 29989  df-pmap 29990  df-padd 30282  df-lhyp 30474  df-laut 30475  df-ldil 30590  df-ltrn 30591  df-trl 30645
  Copyright terms: Public domain W3C validator