Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc2 Unicode version

Theorem cdlemc2 29649
Description: Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
cdlemc2.l  |-  .<_  =  ( le `  K )
cdlemc2.j  |-  .\/  =  ( join `  K )
cdlemc2.m  |-  ./\  =  ( meet `  K )
cdlemc2.a  |-  A  =  ( Atoms `  K )
cdlemc2.h  |-  H  =  ( LHyp `  K
)
cdlemc2.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemc2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  Q )  .<_  ( ( F `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) )

Proof of Theorem cdlemc2
StepHypRef Expression
1 simp1l 981 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  K  e.  HL )
2 simp3ll 1028 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  P  e.  A )
3 simp3rl 1030 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  e.  A )
4 cdlemc2.l . . . . . 6  |-  .<_  =  ( le `  K )
5 cdlemc2.j . . . . . 6  |-  .\/  =  ( join `  K )
6 cdlemc2.a . . . . . 6  |-  A  =  ( Atoms `  K )
74, 5, 6hlatlej2 28833 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  Q  .<_  ( P  .\/  Q ) )
81, 2, 3, 7syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  .<_  ( P  .\/  Q
) )
9 simp1 957 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
10 eqid 2285 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1110, 6atbase 28747 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
123, 11syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  e.  ( Base `  K
) )
13 simp3l 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
14 cdlemc2.m . . . . . 6  |-  ./\  =  ( meet `  K )
15 cdlemc2.h . . . . . 6  |-  H  =  ( LHyp `  K
)
1610, 4, 5, 14, 6, 15cdlemc1 29648 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Q  e.  (
Base `  K )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
)  =  ( P 
.\/  Q ) )
179, 12, 13, 16syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( P  .\/  Q ) )
188, 17breqtrrd 4051 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  .<_  ( P  .\/  (
( P  .\/  Q
)  ./\  W )
) )
19 simp2 958 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  F  e.  T )
20 hllat 28821 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
211, 20syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  K  e.  Lat )
2210, 6atbase 28747 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
232, 22syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  P  e.  ( Base `  K
) )
2410, 5latjcl 14151 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
2521, 23, 12, 24syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
26 simp1r 982 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  W  e.  H )
2710, 15lhpbase 29455 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2826, 27syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  W  e.  ( Base `  K
) )
2910, 14latmcl 14152 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K ) )
3021, 25, 28, 29syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  (
( P  .\/  Q
)  ./\  W )  e.  ( Base `  K
) )
3110, 5latjcl 14151 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  ./\  W )  e.  ( Base `  K
) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  e.  (
Base `  K )
)
3221, 23, 30, 31syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  e.  (
Base `  K )
)
33 cdlemc2.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
3410, 4, 15, 33ltrnle 29586 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( Q  e.  (
Base `  K )  /\  ( P  .\/  (
( P  .\/  Q
)  ./\  W )
)  e.  ( Base `  K ) ) )  ->  ( Q  .<_  ( P  .\/  ( ( P  .\/  Q ) 
./\  W ) )  <-> 
( F `  Q
)  .<_  ( F `  ( P  .\/  ( ( P  .\/  Q ) 
./\  W ) ) ) ) )
359, 19, 12, 32, 34syl112anc 1188 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( Q  .<_  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
)  <->  ( F `  Q )  .<_  ( F `
 ( P  .\/  ( ( P  .\/  Q )  ./\  W )
) ) ) )
3618, 35mpbid 203 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  Q )  .<_  ( F `  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) ) ) )
3710, 5, 15, 33ltrnj 29589 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  (
Base `  K )  /\  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K
) ) )  -> 
( F `  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) ) )  =  ( ( F `  P )  .\/  ( F `  ( ( P  .\/  Q )  ./\  W ) ) ) )
389, 19, 23, 30, 37syl112anc 1188 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
) )  =  ( ( F `  P
)  .\/  ( F `  ( ( P  .\/  Q )  ./\  W )
) ) )
3910, 4, 14latmle2 14178 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
4021, 25, 28, 39syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  (
( P  .\/  Q
)  ./\  W )  .<_  W )
4110, 4, 15, 33ltrnval1 29591 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( ( P 
.\/  Q )  ./\  W )  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  ./\  W )  .<_  W ) )  -> 
( F `  (
( P  .\/  Q
)  ./\  W )
)  =  ( ( P  .\/  Q ) 
./\  W ) )
429, 19, 30, 40, 41syl112anc 1188 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  ( ( P  .\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  W )
)
4342oveq2d 5836 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  (
( F `  P
)  .\/  ( F `  ( ( P  .\/  Q )  ./\  W )
) )  =  ( ( F `  P
)  .\/  ( ( P  .\/  Q )  ./\  W ) ) )
4438, 43eqtrd 2317 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
) )  =  ( ( F `  P
)  .\/  ( ( P  .\/  Q )  ./\  W ) ) )
4536, 44breqtrd 4049 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  Q )  .<_  ( ( F `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   class class class wbr 4025   ` cfv 5222  (class class class)co 5820   Basecbs 13143   lecple 13210   joincjn 14073   meetcmee 14074   Latclat 14146   Atomscatm 28721   HLchlt 28808   LHypclh 29441   LTrncltrn 29558
This theorem is referenced by:  cdlemc5  29652
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-map 6770  df-poset 14075  df-plt 14087  df-lub 14103  df-glb 14104  df-join 14105  df-meet 14106  df-p0 14140  df-p1 14141  df-lat 14147  df-clat 14209  df-oposet 28634  df-ol 28636  df-oml 28637  df-covers 28724  df-ats 28725  df-atl 28756  df-cvlat 28780  df-hlat 28809  df-psubsp 28960  df-pmap 28961  df-padd 29253  df-lhyp 29445  df-laut 29446  df-ldil 29561  df-ltrn 29562
  Copyright terms: Public domain W3C validator