Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemc2 Unicode version

Theorem cdlemc2 31003
Description: Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
cdlemc2.l  |-  .<_  =  ( le `  K )
cdlemc2.j  |-  .\/  =  ( join `  K )
cdlemc2.m  |-  ./\  =  ( meet `  K )
cdlemc2.a  |-  A  =  ( Atoms `  K )
cdlemc2.h  |-  H  =  ( LHyp `  K
)
cdlemc2.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemc2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  Q )  .<_  ( ( F `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) )

Proof of Theorem cdlemc2
StepHypRef Expression
1 simp1l 979 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  K  e.  HL )
2 simp3ll 1026 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  P  e.  A )
3 simp3rl 1028 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  e.  A )
4 cdlemc2.l . . . . . 6  |-  .<_  =  ( le `  K )
5 cdlemc2.j . . . . . 6  |-  .\/  =  ( join `  K )
6 cdlemc2.a . . . . . 6  |-  A  =  ( Atoms `  K )
74, 5, 6hlatlej2 30187 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  Q  .<_  ( P  .\/  Q ) )
81, 2, 3, 7syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  .<_  ( P  .\/  Q
) )
9 simp1 955 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
10 eqid 2296 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1110, 6atbase 30101 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
123, 11syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  e.  ( Base `  K
) )
13 simp3l 983 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
14 cdlemc2.m . . . . . 6  |-  ./\  =  ( meet `  K )
15 cdlemc2.h . . . . . 6  |-  H  =  ( LHyp `  K
)
1610, 4, 5, 14, 6, 15cdlemc1 31002 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  Q  e.  (
Base `  K )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
)  =  ( P 
.\/  Q ) )
179, 12, 13, 16syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  =  ( P  .\/  Q ) )
188, 17breqtrrd 4065 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  Q  .<_  ( P  .\/  (
( P  .\/  Q
)  ./\  W )
) )
19 simp2 956 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  F  e.  T )
20 hllat 30175 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
211, 20syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  K  e.  Lat )
2210, 6atbase 30101 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
232, 22syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  P  e.  ( Base `  K
) )
2410, 5latjcl 14172 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
2521, 23, 12, 24syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
26 simp1r 980 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  W  e.  H )
2710, 15lhpbase 30809 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2826, 27syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  W  e.  ( Base `  K
) )
2910, 14latmcl 14173 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K ) )
3021, 25, 28, 29syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  (
( P  .\/  Q
)  ./\  W )  e.  ( Base `  K
) )
3110, 5latjcl 14172 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  ./\  W )  e.  ( Base `  K
) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  e.  (
Base `  K )
)
3221, 23, 30, 31syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) )  e.  (
Base `  K )
)
33 cdlemc2.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
3410, 4, 15, 33ltrnle 30940 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( Q  e.  (
Base `  K )  /\  ( P  .\/  (
( P  .\/  Q
)  ./\  W )
)  e.  ( Base `  K ) ) )  ->  ( Q  .<_  ( P  .\/  ( ( P  .\/  Q ) 
./\  W ) )  <-> 
( F `  Q
)  .<_  ( F `  ( P  .\/  ( ( P  .\/  Q ) 
./\  W ) ) ) ) )
359, 19, 12, 32, 34syl112anc 1186 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( Q  .<_  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
)  <->  ( F `  Q )  .<_  ( F `
 ( P  .\/  ( ( P  .\/  Q )  ./\  W )
) ) ) )
3618, 35mpbid 201 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  Q )  .<_  ( F `  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) ) ) )
3710, 5, 15, 33ltrnj 30943 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  (
Base `  K )  /\  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K
) ) )  -> 
( F `  ( P  .\/  ( ( P 
.\/  Q )  ./\  W ) ) )  =  ( ( F `  P )  .\/  ( F `  ( ( P  .\/  Q )  ./\  W ) ) ) )
389, 19, 23, 30, 37syl112anc 1186 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
) )  =  ( ( F `  P
)  .\/  ( F `  ( ( P  .\/  Q )  ./\  W )
) ) )
3910, 4, 14latmle2 14199 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
4021, 25, 28, 39syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  (
( P  .\/  Q
)  ./\  W )  .<_  W )
4110, 4, 15, 33ltrnval1 30945 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( ( P 
.\/  Q )  ./\  W )  e.  ( Base `  K )  /\  (
( P  .\/  Q
)  ./\  W )  .<_  W ) )  -> 
( F `  (
( P  .\/  Q
)  ./\  W )
)  =  ( ( P  .\/  Q ) 
./\  W ) )
429, 19, 30, 40, 41syl112anc 1186 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  ( ( P  .\/  Q )  ./\  W ) )  =  ( ( P  .\/  Q
)  ./\  W )
)
4342oveq2d 5890 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  (
( F `  P
)  .\/  ( F `  ( ( P  .\/  Q )  ./\  W )
) )  =  ( ( F `  P
)  .\/  ( ( P  .\/  Q )  ./\  W ) ) )
4438, 43eqtrd 2328 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
) )  =  ( ( F `  P
)  .\/  ( ( P  .\/  Q )  ./\  W ) ) )
4536, 44breqtrd 4063 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  Q )  .<_  ( ( F `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   meetcmee 14095   Latclat 14167   Atomscatm 30075   HLchlt 30162   LHypclh 30795   LTrncltrn 30912
This theorem is referenced by:  cdlemc5  31006
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916
  Copyright terms: Public domain W3C validator