Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd Structured version   Unicode version

Theorem cdlemd 30941
Description: If two translations agree at any atom not under the fiducial co-atom  W, then they are equal. Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
Hypotheses
Ref Expression
cdlemd.l  |-  .<_  =  ( le `  K )
cdlemd.a  |-  A  =  ( Atoms `  K )
cdlemd.h  |-  H  =  ( LHyp `  K
)
cdlemd.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  ->  F  =  G )

Proof of Theorem cdlemd
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 simpl11 1032 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl12 1033 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  F  e.  T )
3 simpl13 1034 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  G  e.  T )
42, 3jca 519 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  ( F  e.  T  /\  G  e.  T )
)
5 simpr 448 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  q  e.  A )
6 simpl2 961 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
7 simpl3 962 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  ( F `  P )  =  ( G `  P ) )
8 cdlemd.l . . . . 5  |-  .<_  =  ( le `  K )
9 eqid 2435 . . . . 5  |-  ( join `  K )  =  (
join `  K )
10 cdlemd.a . . . . 5  |-  A  =  ( Atoms `  K )
11 cdlemd.h . . . . 5  |-  H  =  ( LHyp `  K
)
12 cdlemd.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
138, 9, 10, 11, 12cdlemd9 30940 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  q  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  q
)  =  ( G `
 q ) )
141, 4, 5, 6, 7, 13syl311anc 1198 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  ( F `  q )  =  ( G `  q ) )
1514ralrimiva 2781 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  ->  A. q  e.  A  ( F `  q )  =  ( G `  q ) )
1610, 11, 12ltrneq2 30882 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( A. q  e.  A  ( F `  q )  =  ( G `  q )  <->  F  =  G ) )
17163ad2ant1 978 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  ->  ( A. q  e.  A  ( F `  q )  =  ( G `  q )  <->  F  =  G ) )
1815, 17mpbid 202 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   class class class wbr 4204   ` cfv 5446   lecple 13528   joincjn 14393   Atomscatm 29998   HLchlt 30085   LHypclh 30718   LTrncltrn 30835
This theorem is referenced by:  ltrneq3  30942  cdleme  31294  cdlemg1a  31304  ltrniotavalbN  31318  cdlemg44  31467  cdlemk19  31603  cdlemk27-3  31641  cdlemk33N  31643  cdlemk34  31644  cdlemk53a  31689  cdlemk19u  31704  dia2dimlem4  31802  dih1dimatlem0  32063
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-llines 30232  df-psubsp 30237  df-pmap 30238  df-padd 30530  df-lhyp 30722  df-laut 30723  df-ldil 30838  df-ltrn 30839  df-trl 30893
  Copyright terms: Public domain W3C validator