Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd Unicode version

Theorem cdlemd 30465
Description: If two translations agree at any atom not under the fiducial co-atom  W, then they are equal. Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.)
Hypotheses
Ref Expression
cdlemd.l  |-  .<_  =  ( le `  K )
cdlemd.a  |-  A  =  ( Atoms `  K )
cdlemd.h  |-  H  =  ( LHyp `  K
)
cdlemd.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  ->  F  =  G )

Proof of Theorem cdlemd
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 simpl11 1030 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl12 1031 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  F  e.  T )
3 simpl13 1032 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  G  e.  T )
42, 3jca 518 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  ( F  e.  T  /\  G  e.  T )
)
5 simpr 447 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  q  e.  A )
6 simpl2 959 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
7 simpl3 960 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  ( F `  P )  =  ( G `  P ) )
8 cdlemd.l . . . . 5  |-  .<_  =  ( le `  K )
9 eqid 2358 . . . . 5  |-  ( join `  K )  =  (
join `  K )
10 cdlemd.a . . . . 5  |-  A  =  ( Atoms `  K )
11 cdlemd.h . . . . 5  |-  H  =  ( LHyp `  K
)
12 cdlemd.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
138, 9, 10, 11, 12cdlemd9 30464 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  q  e.  A
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  q
)  =  ( G `
 q ) )
141, 4, 5, 6, 7, 13syl311anc 1196 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  /\  q  e.  A )  ->  ( F `  q )  =  ( G `  q ) )
1514ralrimiva 2702 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  ->  A. q  e.  A  ( F `  q )  =  ( G `  q ) )
1610, 11, 12ltrneq2 30406 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( A. q  e.  A  ( F `  q )  =  ( G `  q )  <->  F  =  G ) )
17163ad2ant1 976 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  ->  ( A. q  e.  A  ( F `  q )  =  ( G `  q )  <->  F  =  G ) )
1815, 17mpbid 201 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F `  P )  =  ( G `  P ) )  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   A.wral 2619   class class class wbr 4104   ` cfv 5337   lecple 13312   joincjn 14177   Atomscatm 29522   HLchlt 29609   LHypclh 30242   LTrncltrn 30359
This theorem is referenced by:  ltrneq3  30466  cdleme  30818  cdlemg1a  30828  ltrniotavalbN  30842  cdlemg44  30991  cdlemk19  31127  cdlemk27-3  31165  cdlemk33N  31167  cdlemk34  31168  cdlemk53a  31213  cdlemk19u  31228  dia2dimlem4  31326  dih1dimatlem0  31587
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-undef 6385  df-riota 6391  df-map 6862  df-poset 14179  df-plt 14191  df-lub 14207  df-glb 14208  df-join 14209  df-meet 14210  df-p0 14244  df-p1 14245  df-lat 14251  df-clat 14313  df-oposet 29435  df-ol 29437  df-oml 29438  df-covers 29525  df-ats 29526  df-atl 29557  df-cvlat 29581  df-hlat 29610  df-llines 29756  df-psubsp 29761  df-pmap 29762  df-padd 30054  df-lhyp 30246  df-laut 30247  df-ldil 30362  df-ltrn 30363  df-trl 30417
  Copyright terms: Public domain W3C validator