Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd2 Unicode version

Theorem cdlemd2 31010
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 29-May-2012.)
Hypotheses
Ref Expression
cdlemd2.l  |-  .<_  =  ( le `  K )
cdlemd2.j  |-  .\/  =  ( join `  K )
cdlemd2.a  |-  A  =  ( Atoms `  K )
cdlemd2.h  |-  H  =  ( LHyp `  K
)
cdlemd2.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )

Proof of Theorem cdlemd2
StepHypRef Expression
1 simp3l 983 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  P )  =  ( G `  P ) )
2 simp11 985 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp12l 1068 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  F  e.  T )
4 simp11l 1066 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  K  e.  HL )
5 hllat 30175 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
64, 5syl 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  K  e.  Lat )
7 simp21l 1072 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  e.  A )
8 simp13 987 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  R  e.  A )
9 eqid 2296 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
10 cdlemd2.j . . . . . . . . . . 11  |-  .\/  =  ( join `  K )
11 cdlemd2.a . . . . . . . . . . 11  |-  A  =  ( Atoms `  K )
129, 10, 11hlatjcl 30178 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  e.  ( Base `  K ) )
134, 7, 8, 12syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( P  .\/  R )  e.  ( Base `  K
) )
14 simp11r 1067 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  W  e.  H )
15 cdlemd2.h . . . . . . . . . . 11  |-  H  =  ( LHyp `  K
)
169, 15lhpbase 30809 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1714, 16syl 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  W  e.  ( Base `  K
) )
18 eqid 2296 . . . . . . . . . 10  |-  ( meet `  K )  =  (
meet `  K )
199, 18latmcl 14173 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  R ) (
meet `  K ) W )  e.  (
Base `  K )
)
206, 13, 17, 19syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  (
( P  .\/  R
) ( meet `  K
) W )  e.  ( Base `  K
) )
21 cdlemd2.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
229, 21, 18latmle2 14199 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  R ) (
meet `  K ) W )  .<_  W )
236, 13, 17, 22syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  (
( P  .\/  R
) ( meet `  K
) W )  .<_  W )
24 cdlemd2.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
259, 21, 15, 24ltrnval1 30945 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( ( P 
.\/  R ) (
meet `  K ) W )  e.  (
Base `  K )  /\  ( ( P  .\/  R ) ( meet `  K
) W )  .<_  W ) )  -> 
( F `  (
( P  .\/  R
) ( meet `  K
) W ) )  =  ( ( P 
.\/  R ) (
meet `  K ) W ) )
262, 3, 20, 23, 25syl112anc 1186 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  ( ( P  .\/  R ) (
meet `  K ) W ) )  =  ( ( P  .\/  R ) ( meet `  K
) W ) )
27 simp12r 1069 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  G  e.  T )
289, 21, 15, 24ltrnval1 30945 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( ( ( P 
.\/  R ) (
meet `  K ) W )  e.  (
Base `  K )  /\  ( ( P  .\/  R ) ( meet `  K
) W )  .<_  W ) )  -> 
( G `  (
( P  .\/  R
) ( meet `  K
) W ) )  =  ( ( P 
.\/  R ) (
meet `  K ) W ) )
292, 27, 20, 23, 28syl112anc 1186 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( G `  ( ( P  .\/  R ) (
meet `  K ) W ) )  =  ( ( P  .\/  R ) ( meet `  K
) W ) )
3026, 29eqtr4d 2331 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  ( ( P  .\/  R ) (
meet `  K ) W ) )  =  ( G `  (
( P  .\/  R
) ( meet `  K
) W ) ) )
311, 30oveq12d 5892 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  (
( F `  P
)  .\/  ( F `  ( ( P  .\/  R ) ( meet `  K
) W ) ) )  =  ( ( G `  P ) 
.\/  ( G `  ( ( P  .\/  R ) ( meet `  K
) W ) ) ) )
329, 11atbase 30101 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
337, 32syl 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  e.  ( Base `  K
) )
349, 10, 15, 24ltrnj 30943 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  (
Base `  K )  /\  ( ( P  .\/  R ) ( meet `  K
) W )  e.  ( Base `  K
) ) )  -> 
( F `  ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) ) )  =  ( ( F `
 P )  .\/  ( F `  ( ( P  .\/  R ) ( meet `  K
) W ) ) ) )
352, 3, 33, 20, 34syl112anc 1186 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  ( P  .\/  ( ( P  .\/  R ) ( meet `  K
) W ) ) )  =  ( ( F `  P ) 
.\/  ( F `  ( ( P  .\/  R ) ( meet `  K
) W ) ) ) )
369, 10, 15, 24ltrnj 30943 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  (
Base `  K )  /\  ( ( P  .\/  R ) ( meet `  K
) W )  e.  ( Base `  K
) ) )  -> 
( G `  ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) ) )  =  ( ( G `
 P )  .\/  ( G `  ( ( P  .\/  R ) ( meet `  K
) W ) ) ) )
372, 27, 33, 20, 36syl112anc 1186 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( G `  ( P  .\/  ( ( P  .\/  R ) ( meet `  K
) W ) ) )  =  ( ( G `  P ) 
.\/  ( G `  ( ( P  .\/  R ) ( meet `  K
) W ) ) ) )
3831, 35, 373eqtr4d 2338 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  ( P  .\/  ( ( P  .\/  R ) ( meet `  K
) W ) ) )  =  ( G `
 ( P  .\/  ( ( P  .\/  R ) ( meet `  K
) W ) ) ) )
39 simp3r 984 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  Q )  =  ( G `  Q ) )
40 simp22l 1074 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  Q  e.  A )
419, 10, 11hlatjcl 30178 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  R  e.  A )  ->  ( Q  .\/  R
)  e.  ( Base `  K ) )
424, 40, 8, 41syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( Q  .\/  R )  e.  ( Base `  K
) )
439, 18latmcl 14173 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( Q  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( Q  .\/  R ) (
meet `  K ) W )  e.  (
Base `  K )
)
446, 42, 17, 43syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  (
( Q  .\/  R
) ( meet `  K
) W )  e.  ( Base `  K
) )
459, 21, 18latmle2 14199 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( Q  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( Q  .\/  R ) (
meet `  K ) W )  .<_  W )
466, 42, 17, 45syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  (
( Q  .\/  R
) ( meet `  K
) W )  .<_  W )
479, 21, 15, 24ltrnval1 30945 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( ( Q 
.\/  R ) (
meet `  K ) W )  e.  (
Base `  K )  /\  ( ( Q  .\/  R ) ( meet `  K
) W )  .<_  W ) )  -> 
( F `  (
( Q  .\/  R
) ( meet `  K
) W ) )  =  ( ( Q 
.\/  R ) (
meet `  K ) W ) )
482, 3, 44, 46, 47syl112anc 1186 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  ( ( Q  .\/  R ) (
meet `  K ) W ) )  =  ( ( Q  .\/  R ) ( meet `  K
) W ) )
499, 21, 15, 24ltrnval1 30945 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( ( ( Q 
.\/  R ) (
meet `  K ) W )  e.  (
Base `  K )  /\  ( ( Q  .\/  R ) ( meet `  K
) W )  .<_  W ) )  -> 
( G `  (
( Q  .\/  R
) ( meet `  K
) W ) )  =  ( ( Q 
.\/  R ) (
meet `  K ) W ) )
502, 27, 44, 46, 49syl112anc 1186 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( G `  ( ( Q  .\/  R ) (
meet `  K ) W ) )  =  ( ( Q  .\/  R ) ( meet `  K
) W ) )
5148, 50eqtr4d 2331 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  ( ( Q  .\/  R ) (
meet `  K ) W ) )  =  ( G `  (
( Q  .\/  R
) ( meet `  K
) W ) ) )
5239, 51oveq12d 5892 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  (
( F `  Q
)  .\/  ( F `  ( ( Q  .\/  R ) ( meet `  K
) W ) ) )  =  ( ( G `  Q ) 
.\/  ( G `  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) )
539, 11atbase 30101 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
5440, 53syl 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  Q  e.  ( Base `  K
) )
559, 10, 15, 24ltrnj 30943 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( Q  e.  (
Base `  K )  /\  ( ( Q  .\/  R ) ( meet `  K
) W )  e.  ( Base `  K
) ) )  -> 
( F `  ( Q  .\/  ( ( Q 
.\/  R ) (
meet `  K ) W ) ) )  =  ( ( F `
 Q )  .\/  ( F `  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) )
562, 3, 54, 44, 55syl112anc 1186 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) )  =  ( ( F `  Q ) 
.\/  ( F `  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) )
579, 10, 15, 24ltrnj 30943 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( Q  e.  (
Base `  K )  /\  ( ( Q  .\/  R ) ( meet `  K
) W )  e.  ( Base `  K
) ) )  -> 
( G `  ( Q  .\/  ( ( Q 
.\/  R ) (
meet `  K ) W ) ) )  =  ( ( G `
 Q )  .\/  ( G `  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) )
582, 27, 54, 44, 57syl112anc 1186 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( G `  ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) )  =  ( ( G `  Q ) 
.\/  ( G `  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) )
5952, 56, 583eqtr4d 2338 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) )  =  ( G `
 ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) )
6038, 59oveq12d 5892 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  (
( F `  ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) ) ) ( meet `  K
) ( F `  ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) )  =  ( ( G `  ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) ) ) ( meet `  K
) ( G `  ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) ) )
619, 10latjcl 14172 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  (
( P  .\/  R
) ( meet `  K
) W )  e.  ( Base `  K
) )  ->  ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) )  e.  ( Base `  K
) )
626, 33, 20, 61syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) )  e.  ( Base `  K
) )
639, 10latjcl 14172 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( Q  .\/  R
) ( meet `  K
) W )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( ( Q 
.\/  R ) (
meet `  K ) W ) )  e.  ( Base `  K
) )
646, 54, 44, 63syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( Q  .\/  ( ( Q 
.\/  R ) (
meet `  K ) W ) )  e.  ( Base `  K
) )
659, 18, 15, 24ltrnm 30942 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  .\/  ( ( P  .\/  R ) ( meet `  K
) W ) )  e.  ( Base `  K
)  /\  ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) )  e.  ( Base `  K
) ) )  -> 
( F `  (
( P  .\/  (
( P  .\/  R
) ( meet `  K
) W ) ) ( meet `  K
) ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) )  =  ( ( F `  ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) ) ) ( meet `  K
) ( F `  ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) ) )
662, 3, 62, 64, 65syl112anc 1186 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  ( ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) ) (
meet `  K )
( Q  .\/  (
( Q  .\/  R
) ( meet `  K
) W ) ) ) )  =  ( ( F `  ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) ) ) ( meet `  K
) ( F `  ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) ) )
679, 18, 15, 24ltrnm 30942 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( ( P  .\/  ( ( P  .\/  R ) ( meet `  K
) W ) )  e.  ( Base `  K
)  /\  ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) )  e.  ( Base `  K
) ) )  -> 
( G `  (
( P  .\/  (
( P  .\/  R
) ( meet `  K
) W ) ) ( meet `  K
) ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) )  =  ( ( G `  ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) ) ) ( meet `  K
) ( G `  ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) ) )
682, 27, 62, 64, 67syl112anc 1186 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( G `  ( ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) ) (
meet `  K )
( Q  .\/  (
( Q  .\/  R
) ( meet `  K
) W ) ) ) )  =  ( ( G `  ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) ) ) ( meet `  K
) ( G `  ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) ) )
6960, 66, 683eqtr4d 2338 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  ( ( P  .\/  ( ( P 
.\/  R ) (
meet `  K ) W ) ) (
meet `  K )
( Q  .\/  (
( Q  .\/  R
) ( meet `  K
) W ) ) ) )  =  ( G `  ( ( P  .\/  ( ( P  .\/  R ) ( meet `  K
) W ) ) ( meet `  K
) ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) ) )
70 simp21 988 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
71 simp22 989 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
72 simp23l 1076 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  =/=  Q )
73 simp23r 1077 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  -.  R  .<_  ( P  .\/  Q ) )
748, 72, 733jca 1132 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( R  e.  A  /\  P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )
7521, 10, 18, 11, 15cdlemd1 31009 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  P  =/= 
Q  /\  -.  R  .<_  ( P  .\/  Q
) ) ) )  ->  R  =  ( ( P  .\/  (
( P  .\/  R
) ( meet `  K
) W ) ) ( meet `  K
) ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) )
762, 70, 71, 74, 75syl13anc 1184 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  R  =  ( ( P 
.\/  ( ( P 
.\/  R ) (
meet `  K ) W ) ) (
meet `  K )
( Q  .\/  (
( Q  .\/  R
) ( meet `  K
) W ) ) ) )
7776fveq2d 5545 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( F `  ( ( P  .\/  ( ( P  .\/  R ) ( meet `  K
) W ) ) ( meet `  K
) ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) ) )
7876fveq2d 5545 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( G `  R )  =  ( G `  ( ( P  .\/  ( ( P  .\/  R ) ( meet `  K
) W ) ) ( meet `  K
) ( Q  .\/  ( ( Q  .\/  R ) ( meet `  K
) W ) ) ) ) )
7969, 77, 783eqtr4d 2338 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   meetcmee 14095   Latclat 14167   Atomscatm 30075   HLchlt 30162   LHypclh 30795   LTrncltrn 30912
This theorem is referenced by:  cdlemd4  31012  cdlemd5  31013
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916
  Copyright terms: Public domain W3C validator