Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd3 Unicode version

Theorem cdlemd3 30441
Description: Part of proof of Lemma D in [Crawley] p. 113. The  R  =/=  P requirement is not mentioned in their proof. (Contributed by NM, 29-May-2012.)
Hypotheses
Ref Expression
cdlemd3.l  |-  .<_  =  ( le `  K )
cdlemd3.j  |-  .\/  =  ( join `  K )
cdlemd3.a  |-  A  =  ( Atoms `  K )
cdlemd3.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdlemd3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  R  .<_  ( P  .\/  S
) )

Proof of Theorem cdlemd3
StepHypRef Expression
1 simp33 993 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
2 simp1l 979 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
3 simp31 991 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  e.  A )
4 simp32 992 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  A )
5 simp21l 1072 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  e.  A )
6 simp233 1101 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  =/=  P )
7 cdlemd3.l . . . . 5  |-  .<_  =  ( le `  K )
8 cdlemd3.j . . . . 5  |-  .\/  =  ( join `  K )
9 cdlemd3.a . . . . 5  |-  A  =  ( Atoms `  K )
107, 8, 9hlatexch1 29636 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  P  e.  A
)  /\  R  =/=  P )  ->  ( R  .<_  ( P  .\/  S
)  ->  S  .<_  ( P  .\/  R ) ) )
112, 3, 4, 5, 6, 10syl131anc 1195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .<_  ( P  .\/  S
)  ->  S  .<_  ( P  .\/  R ) ) )
12 simp22l 1074 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  A )
137, 8, 9hlatlej1 29616 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  P  .<_  ( P  .\/  Q ) )
142, 5, 12, 13syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  .<_  ( P  .\/  Q ) )
15 simp232 1100 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q ) )
16 hllat 29605 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
172, 16syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  Lat )
18 eqid 2358 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
1918, 9atbase 29531 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
205, 19syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  e.  ( Base `  K )
)
2118, 9atbase 29531 . . . . . . 7  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
223, 21syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  e.  ( Base `  K )
)
2318, 9atbase 29531 . . . . . . . 8  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2412, 23syl 15 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  ( Base `  K )
)
2518, 8latjcl 14249 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
2617, 20, 24, 25syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
2718, 7, 8latjle12 14261 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  ( P  .\/  Q )  /\  R  .<_  ( P 
.\/  Q ) )  <-> 
( P  .\/  R
)  .<_  ( P  .\/  Q ) ) )
2817, 20, 22, 26, 27syl13anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( P  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) )  <->  ( P  .\/  R )  .<_  ( P  .\/  Q ) ) )
2914, 15, 28mpbi2and 887 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  R )  .<_  ( P 
.\/  Q ) )
3018, 9atbase 29531 . . . . . 6  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
314, 30syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  ( Base `  K )
)
3218, 8latjcl 14249 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( P  .\/  R )  e.  ( Base `  K
) )
3317, 20, 22, 32syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  R )  e.  (
Base `  K )
)
3418, 7lattr 14255 . . . . 5  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
) )  ->  (
( S  .<_  ( P 
.\/  R )  /\  ( P  .\/  R ) 
.<_  ( P  .\/  Q
) )  ->  S  .<_  ( P  .\/  Q
) ) )
3517, 31, 33, 26, 34syl13anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( S  .<_  ( P  .\/  R )  /\  ( P 
.\/  R )  .<_  ( P  .\/  Q ) )  ->  S  .<_  ( P  .\/  Q ) ) )
3629, 35mpan2d 655 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( S  .<_  ( P  .\/  R
)  ->  S  .<_  ( P  .\/  Q ) ) )
3711, 36syld 40 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .<_  ( P  .\/  S
)  ->  S  .<_  ( P  .\/  Q ) ) )
381, 37mtod 168 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  R  .<_  ( P  .\/  S
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   class class class wbr 4102   ` cfv 5334  (class class class)co 5942   Basecbs 13239   lecple 13306   joincjn 14171   Latclat 14244   Atomscatm 29505   HLchlt 29592   LHypclh 30225
This theorem is referenced by:  cdlemd4  30442
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-undef 6382  df-riota 6388  df-poset 14173  df-plt 14185  df-lub 14201  df-join 14203  df-lat 14245  df-covers 29508  df-ats 29509  df-atl 29540  df-cvlat 29564  df-hlat 29593
  Copyright terms: Public domain W3C validator