Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd4 Unicode version

Theorem cdlemd4 30390
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
Hypotheses
Ref Expression
cdlemd4.l  |-  .<_  =  ( le `  K )
cdlemd4.j  |-  .\/  =  ( join `  K )
cdlemd4.a  |-  A  =  ( Atoms `  K )
cdlemd4.h  |-  H  =  ( LHyp `  K
)
cdlemd4.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )

Proof of Theorem cdlemd4
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simp11l 1066 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  K  e.  HL )
2 simp11r 1067 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  W  e.  H
)
3 simp21 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp22 989 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
5 simp231 1099 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  =/=  Q
)
6 cdlemd4.l . . . 4  |-  .<_  =  ( le `  K )
7 cdlemd4.j . . . 4  |-  .\/  =  ( join `  K )
8 cdlemd4.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdlemd4.h . . . 4  |-  H  =  ( LHyp `  K
)
106, 7, 8, 9cdlemb2 30230 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) )
111, 2, 3, 4, 5, 10syl221anc 1193 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) )
12 simpl11 1030 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simpl12 1031 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F  e.  T  /\  G  e.  T )
)
14 simpl13 1032 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  R  e.  A )
15 simpl21 1033 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
16 simprl 732 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  s  e.  A )
17 simprrl 740 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  s  .<_  W )
1816, 17jca 518 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
19 hllat 29553 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
201, 19syl 15 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  K  e.  Lat )
2120adantr 451 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  K  e.  Lat )
22 eqid 2283 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
2322, 8atbase 29479 . . . . . . . 8  |-  ( s  e.  A  ->  s  e.  ( Base `  K
) )
2423ad2antrl 708 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  s  e.  ( Base `  K
) )
25 simp21l 1072 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  e.  A
)
2622, 8atbase 29479 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2725, 26syl 15 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  e.  (
Base `  K )
)
2827adantr 451 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  e.  ( Base `  K
) )
29 simp22l 1074 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  Q  e.  A
)
3022, 8atbase 29479 . . . . . . . . 9  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
3129, 30syl 15 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  Q  e.  (
Base `  K )
)
3231adantr 451 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  Q  e.  ( Base `  K
) )
33 simprrr 741 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  s  .<_  ( P  .\/  Q ) )
3422, 6, 7latnlej1l 14175 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( s  e.  (
Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K ) )  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  s  =/=  P
)
3534necomd 2529 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( s  e.  (
Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K ) )  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  P  =/=  s
)
3621, 24, 28, 32, 33, 35syl131anc 1195 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  =/=  s )
37 simpl22 1034 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
38 simpl23 1035 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )
396, 7, 8, 9cdlemd3 30389 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  s  e.  A  /\  -.  s  .<_  ( P 
.\/  Q ) ) )  ->  -.  R  .<_  ( P  .\/  s
) )
4012, 15, 37, 38, 14, 16, 33, 39syl133anc 1205 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  R  .<_  ( P  .\/  s ) )
4136, 40jca 518 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  =/=  s  /\  -.  R  .<_  ( P  .\/  s ) ) )
42 simpl3l 1010 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F `  P )  =  ( G `  P ) )
435adantr 451 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  =/=  Q )
4443, 33jca 518 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  =/=  Q  /\  -.  s  .<_  ( P  .\/  Q ) ) )
45 simpl3 960 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )
46 cdlemd4.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
476, 7, 8, 9, 46cdlemd2 30388 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  s  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  s  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  s )  =  ( G `  s ) )
4812, 13, 16, 15, 37, 44, 45, 47syl331anc 1207 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F `  s )  =  ( G `  s ) )
496, 7, 8, 9, 46cdlemd2 30388 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( P  =/=  s  /\  -.  R  .<_  ( P  .\/  s ) ) )  /\  ( ( F `
 P )  =  ( G `  P
)  /\  ( F `  s )  =  ( G `  s ) ) )  ->  ( F `  R )  =  ( G `  R ) )
5012, 13, 14, 15, 18, 41, 42, 48, 49syl332anc 1213 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
5150exp32 588 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( s  e.  A  ->  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  ( F `  R )  =  ( G `  R ) ) ) )
5251rexlimdv 2666 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  ->  ( F `  R )  =  ( G `  R ) ) )
5311, 52mpd 14 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   Latclat 14151   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LTrncltrn 30290
This theorem is referenced by:  cdlemd5  30391
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294
  Copyright terms: Public domain W3C validator