Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd4 Unicode version

Theorem cdlemd4 29657
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.)
Hypotheses
Ref Expression
cdlemd4.l  |-  .<_  =  ( le `  K )
cdlemd4.j  |-  .\/  =  ( join `  K )
cdlemd4.a  |-  A  =  ( Atoms `  K )
cdlemd4.h  |-  H  =  ( LHyp `  K
)
cdlemd4.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
Dummy variable  s is distinct from all other variables.

Proof of Theorem cdlemd4
StepHypRef Expression
1 simp11l 1068 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  K  e.  HL )
2 simp11r 1069 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  W  e.  H
)
3 simp21 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp22 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
5 simp231 1101 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  =/=  Q
)
6 cdlemd4.l . . . 4  |-  .<_  =  ( le `  K )
7 cdlemd4.j . . . 4  |-  .\/  =  ( join `  K )
8 cdlemd4.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdlemd4.h . . . 4  |-  H  =  ( LHyp `  K
)
106, 7, 8, 9cdlemb2 29497 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) )
111, 2, 3, 4, 5, 10syl221anc 1195 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) ) )
12 simpl11 1032 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simpl12 1033 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F  e.  T  /\  G  e.  T )
)
14 simpl13 1034 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  R  e.  A )
15 simpl21 1035 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
16 simprl 734 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  s  e.  A )
17 simprrl 742 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  s  .<_  W )
1816, 17jca 520 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
19 hllat 28820 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
201, 19syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  K  e.  Lat )
2120adantr 453 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  K  e.  Lat )
22 eqid 2284 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
2322, 8atbase 28746 . . . . . . . 8  |-  ( s  e.  A  ->  s  e.  ( Base `  K
) )
2423ad2antrl 710 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  s  e.  ( Base `  K
) )
25 simp21l 1074 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  e.  A
)
2622, 8atbase 28746 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
2725, 26syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  P  e.  (
Base `  K )
)
2827adantr 453 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  e.  ( Base `  K
) )
29 simp22l 1076 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  Q  e.  A
)
3022, 8atbase 28746 . . . . . . . . 9  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
3129, 30syl 17 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  Q  e.  (
Base `  K )
)
3231adantr 453 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  Q  e.  ( Base `  K
) )
33 simprrr 743 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  s  .<_  ( P  .\/  Q ) )
3422, 6, 7latnlej1l 14169 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( s  e.  (
Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K ) )  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  s  =/=  P
)
3534necomd 2530 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( s  e.  (
Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K ) )  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  P  =/=  s
)
3621, 24, 28, 32, 33, 35syl131anc 1197 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  =/=  s )
37 simpl22 1036 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
38 simpl23 1037 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )
396, 7, 8, 9cdlemd3 29656 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q )  /\  R  =/=  P
) )  /\  ( R  e.  A  /\  s  e.  A  /\  -.  s  .<_  ( P 
.\/  Q ) ) )  ->  -.  R  .<_  ( P  .\/  s
) )
4012, 15, 37, 38, 14, 16, 33, 39syl133anc 1207 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  R  .<_  ( P  .\/  s ) )
4136, 40jca 520 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  =/=  s  /\  -.  R  .<_  ( P  .\/  s ) ) )
42 simpl3l 1012 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F `  P )  =  ( G `  P ) )
435adantr 453 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  =/=  Q )
4443, 33jca 520 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( P  =/=  Q  /\  -.  s  .<_  ( P  .\/  Q ) ) )
45 simpl3 962 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )
46 cdlemd4.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
476, 7, 8, 9, 46cdlemd2 29655 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  s  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  -.  s  .<_  ( P  .\/  Q ) ) )  /\  ( ( F `  P )  =  ( G `  P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  s )  =  ( G `  s ) )
4812, 13, 16, 15, 37, 44, 45, 47syl331anc 1209 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F `  s )  =  ( G `  s ) )
496, 7, 8, 9, 46cdlemd2 29655 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( s  e.  A  /\  -.  s  .<_  W )  /\  ( P  =/=  s  /\  -.  R  .<_  ( P  .\/  s ) ) )  /\  ( ( F `
 P )  =  ( G `  P
)  /\  ( F `  s )  =  ( G `  s ) ) )  ->  ( F `  R )  =  ( G `  R ) )
5012, 13, 14, 15, 18, 41, 42, 48, 49syl332anc 1215 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  /\  ( s  e.  A  /\  ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) ) ) )  ->  ( F `  R )  =  ( G `  R ) )
5150exp32 590 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( s  e.  A  ->  ( ( -.  s  .<_  W  /\  -.  s  .<_  ( P 
.\/  Q ) )  ->  ( F `  R )  =  ( G `  R ) ) ) )
5251rexlimdv 2667 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( E. s  e.  A  ( -.  s  .<_  W  /\  -.  s  .<_  ( P  .\/  Q ) )  ->  ( F `  R )  =  ( G `  R ) ) )
5311, 52mpd 16 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  R  e.  A
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  R  =/=  P ) )  /\  (
( F `  P
)  =  ( G `
 P )  /\  ( F `  Q )  =  ( G `  Q ) ) )  ->  ( F `  R )  =  ( G `  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2447   E.wrex 2545   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   Basecbs 13142   lecple 13209   joincjn 14072   Latclat 14145   Atomscatm 28720   HLchlt 28807   LHypclh 29440   LTrncltrn 29557
This theorem is referenced by:  cdlemd5  29658
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-map 6769  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-psubsp 28959  df-pmap 28960  df-padd 29252  df-lhyp 29444  df-laut 29445  df-ldil 29560  df-ltrn 29561
  Copyright terms: Public domain W3C validator