Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd6 Unicode version

Theorem cdlemd6 29081
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 31-May-2012.)
Hypotheses
Ref Expression
cdlemd4.l  |-  .<_  =  ( le `  K )
cdlemd4.j  |-  .\/  =  ( join `  K )
cdlemd4.a  |-  A  =  ( Atoms `  K )
cdlemd4.h  |-  H  =  ( LHyp `  K
)
cdlemd4.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemd6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  Q
)  =  ( G `
 Q ) )

Proof of Theorem cdlemd6
StepHypRef Expression
1 simp3 962 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  P
)  =  ( G `
 P ) )
21oveq2d 5726 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( P  .\/  ( F `  P )
)  =  ( P 
.\/  ( G `  P ) ) )
32oveq1d 5725 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( ( P  .\/  ( F `  P ) ) ( meet `  K
) W )  =  ( ( P  .\/  ( G `  P ) ) ( meet `  K
) W ) )
4 simp1l 984 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
5 simp1rl 1025 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  ->  F  e.  T )
6 simp21 993 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
7 cdlemd4.l . . . . . . 7  |-  .<_  =  ( le `  K )
8 cdlemd4.j . . . . . . 7  |-  .\/  =  ( join `  K )
9 eqid 2253 . . . . . . 7  |-  ( meet `  K )  =  (
meet `  K )
10 cdlemd4.a . . . . . . 7  |-  A  =  ( Atoms `  K )
11 cdlemd4.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
12 cdlemd4.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
13 eqid 2253 . . . . . . 7  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
147, 8, 9, 10, 11, 12, 13trlval2 29041 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( trL `  K
) `  W ) `  F )  =  ( ( P  .\/  ( F `  P )
) ( meet `  K
) W ) )
154, 5, 6, 14syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( ( ( trL `  K ) `  W
) `  F )  =  ( ( P 
.\/  ( F `  P ) ) (
meet `  K ) W ) )
16 simp1rr 1026 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  ->  G  e.  T )
177, 8, 9, 10, 11, 12, 13trlval2 29041 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( trL `  K
) `  W ) `  G )  =  ( ( P  .\/  ( G `  P )
) ( meet `  K
) W ) )
184, 16, 6, 17syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( ( ( trL `  K ) `  W
) `  G )  =  ( ( P 
.\/  ( G `  P ) ) (
meet `  K ) W ) )
193, 15, 183eqtr4d 2295 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( ( ( trL `  K ) `  W
) `  F )  =  ( ( ( trL `  K ) `
 W ) `  G ) )
2019oveq2d 5726 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( Q  .\/  (
( ( trL `  K
) `  W ) `  F ) )  =  ( Q  .\/  (
( ( trL `  K
) `  W ) `  G ) ) )
211oveq1d 5725 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( ( F `  P )  .\/  (
( P  .\/  Q
) ( meet `  K
) W ) )  =  ( ( G `
 P )  .\/  ( ( P  .\/  Q ) ( meet `  K
) W ) ) )
2220, 21oveq12d 5728 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( ( Q  .\/  ( ( ( trL `  K ) `  W
) `  F )
) ( meet `  K
) ( ( F `
 P )  .\/  ( ( P  .\/  Q ) ( meet `  K
) W ) ) )  =  ( ( Q  .\/  ( ( ( trL `  K
) `  W ) `  G ) ) (
meet `  K )
( ( G `  P )  .\/  (
( P  .\/  Q
) ( meet `  K
) W ) ) ) )
23 simp22 994 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
24 simp23 995 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  ->  -.  Q  .<_  ( P 
.\/  ( F `  P ) ) )
257, 8, 9, 10, 11, 12, 13cdlemc 29075 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P  .\/  ( F `  P )
) )  ->  ( F `  Q )  =  ( ( Q 
.\/  ( ( ( trL `  K ) `
 W ) `  F ) ) (
meet `  K )
( ( F `  P )  .\/  (
( P  .\/  Q
) ( meet `  K
) W ) ) ) )
264, 5, 6, 23, 24, 25syl131anc 1200 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  Q
)  =  ( ( Q  .\/  ( ( ( trL `  K
) `  W ) `  F ) ) (
meet `  K )
( ( F `  P )  .\/  (
( P  .\/  Q
) ( meet `  K
) W ) ) ) )
27 oveq2 5718 . . . . . . 7  |-  ( ( F `  P )  =  ( G `  P )  ->  ( P  .\/  ( F `  P ) )  =  ( P  .\/  ( G `  P )
) )
2827breq2d 3932 . . . . . 6  |-  ( ( F `  P )  =  ( G `  P )  ->  ( Q  .<_  ( P  .\/  ( F `  P ) )  <->  Q  .<_  ( P 
.\/  ( G `  P ) ) ) )
2928notbid 287 . . . . 5  |-  ( ( F `  P )  =  ( G `  P )  ->  ( -.  Q  .<_  ( P 
.\/  ( F `  P ) )  <->  -.  Q  .<_  ( P  .\/  ( G `  P )
) ) )
3029biimpd 200 . . . 4  |-  ( ( F `  P )  =  ( G `  P )  ->  ( -.  Q  .<_  ( P 
.\/  ( F `  P ) )  ->  -.  Q  .<_  ( P 
.\/  ( G `  P ) ) ) )
311, 24, 30sylc 58 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  ->  -.  Q  .<_  ( P 
.\/  ( G `  P ) ) )
327, 8, 9, 10, 11, 12, 13cdlemc 29075 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  -.  Q  .<_  ( P  .\/  ( G `  P )
) )  ->  ( G `  Q )  =  ( ( Q 
.\/  ( ( ( trL `  K ) `
 W ) `  G ) ) (
meet `  K )
( ( G `  P )  .\/  (
( P  .\/  Q
) ( meet `  K
) W ) ) ) )
334, 16, 6, 23, 31, 32syl131anc 1200 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( G `  Q
)  =  ( ( Q  .\/  ( ( ( trL `  K
) `  W ) `  G ) ) (
meet `  K )
( ( G `  P )  .\/  (
( P  .\/  Q
) ( meet `  K
) W ) ) ) )
3422, 26, 333eqtr4d 2295 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  -.  Q  .<_  ( P  .\/  ( F `  P ) ) )  /\  ( F `  P )  =  ( G `  P ) )  -> 
( F `  Q
)  =  ( G `
 Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   lecple 13089   joincjn 13922   meetcmee 13923   Atomscatm 28142   HLchlt 28229   LHypclh 28862   LTrncltrn 28979   trLctrl 29036
This theorem is referenced by:  cdlemd7  29082
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-llines 28376  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866  df-laut 28867  df-ldil 28982  df-ltrn 28983  df-trl 29037
  Copyright terms: Public domain W3C validator