Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme Unicode version

Theorem cdleme 29916
Description: Lemma E in [Crawley] p. 113. If p,q are atoms not under hyperplane w, then there is a unique translation f such that f(p) = q. (Contributed by NM, 11-Apr-2013.)
Hypotheses
Ref Expression
cdleme.l  |-  .<_  =  ( le `  K )
cdleme.a  |-  A  =  ( Atoms `  K )
cdleme.h  |-  H  =  ( LHyp `  K
)
cdleme.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdleme  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  E! f  e.  T  ( f `  P )  =  Q )
Distinct variable groups:    A, f    f, K    .<_ , f    P, f    Q, f    T, f    f, W   
f, H

Proof of Theorem cdleme
StepHypRef Expression
1 cdleme.l . . 3  |-  .<_  =  ( le `  K )
2 cdleme.a . . 3  |-  A  =  ( Atoms `  K )
3 cdleme.h . . 3  |-  H  =  ( LHyp `  K
)
4 cdleme.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
51, 2, 3, 4cdleme50ex 29915 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  E. f  e.  T  ( f `  P )  =  Q )
6 simp11 990 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( f  e.  T  /\  z  e.  T
)  /\  ( (
f `  P )  =  Q  /\  (
z `  P )  =  Q ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
7 simp2l 986 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( f  e.  T  /\  z  e.  T
)  /\  ( (
f `  P )  =  Q  /\  (
z `  P )  =  Q ) )  -> 
f  e.  T )
8 simp2r 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( f  e.  T  /\  z  e.  T
)  /\  ( (
f `  P )  =  Q  /\  (
z `  P )  =  Q ) )  -> 
z  e.  T )
9 simp12 991 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( f  e.  T  /\  z  e.  T
)  /\  ( (
f `  P )  =  Q  /\  (
z `  P )  =  Q ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
10 eqtr3 2277 . . . . . 6  |-  ( ( ( f `  P
)  =  Q  /\  ( z `  P
)  =  Q )  ->  ( f `  P )  =  ( z `  P ) )
11103ad2ant3 983 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( f  e.  T  /\  z  e.  T
)  /\  ( (
f `  P )  =  Q  /\  (
z `  P )  =  Q ) )  -> 
( f `  P
)  =  ( z `
 P ) )
121, 2, 3, 4cdlemd 29563 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T  /\  z  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( f `  P )  =  ( z `  P ) )  ->  f  =  z )
136, 7, 8, 9, 11, 12syl311anc 1201 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( f  e.  T  /\  z  e.  T
)  /\  ( (
f `  P )  =  Q  /\  (
z `  P )  =  Q ) )  -> 
f  =  z )
14133exp 1155 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( (
f  e.  T  /\  z  e.  T )  ->  ( ( ( f `
 P )  =  Q  /\  ( z `
 P )  =  Q )  ->  f  =  z ) ) )
1514ralrimivv 2609 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  A. f  e.  T  A. z  e.  T  ( (
( f `  P
)  =  Q  /\  ( z `  P
)  =  Q )  ->  f  =  z ) )
16 fveq1 5457 . . . 4  |-  ( f  =  z  ->  (
f `  P )  =  ( z `  P ) )
1716eqeq1d 2266 . . 3  |-  ( f  =  z  ->  (
( f `  P
)  =  Q  <->  ( z `  P )  =  Q ) )
1817reu4 2934 . 2  |-  ( E! f  e.  T  ( f `  P )  =  Q  <->  ( E. f  e.  T  (
f `  P )  =  Q  /\  A. f  e.  T  A. z  e.  T  ( (
( f `  P
)  =  Q  /\  ( z `  P
)  =  Q )  ->  f  =  z ) ) )
195, 15, 18sylanbrc 648 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  E! f  e.  T  ( f `  P )  =  Q )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   A.wral 2518   E.wrex 2519   E!wreu 2520   class class class wbr 3997   ` cfv 4673   lecple 13177   Atomscatm 28620   HLchlt 28707   LHypclh 29340   LTrncltrn 29457
This theorem is referenced by:  ltrniotaval  29937  cdlemeiota  29941  cdlemksv2  30203  cdlemkuv2  30223
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14042  df-plt 14054  df-lub 14070  df-glb 14071  df-join 14072  df-meet 14073  df-p0 14107  df-p1 14108  df-lat 14114  df-clat 14176  df-oposet 28533  df-ol 28535  df-oml 28536  df-covers 28623  df-ats 28624  df-atl 28655  df-cvlat 28679  df-hlat 28708  df-llines 28854  df-lplanes 28855  df-lvols 28856  df-lines 28857  df-psubsp 28859  df-pmap 28860  df-padd 29152  df-lhyp 29344  df-laut 29345  df-ldil 29460  df-ltrn 29461  df-trl 29515
  Copyright terms: Public domain W3C validator