Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0aa Unicode version

Theorem cdleme0aa 29529
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme0.b  |-  B  =  ( Base `  K
)
Assertion
Ref Expression
cdleme0aa  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  B )

Proof of Theorem cdleme0aa
StepHypRef Expression
1 cdleme0.u . 2  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2 simp1l 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  K  e.  HL )
3 hllat 28683 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  K  e.  Lat )
5 cdleme0.b . . . . . 6  |-  B  =  ( Base `  K
)
6 cdleme0.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 28609 . . . . 5  |-  ( P  e.  A  ->  P  e.  B )
873ad2ant2 982 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  P  e.  B )
95, 6atbase 28609 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  B )
1093ad2ant3 983 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  Q  e.  B )
11 cdleme0.j . . . . 5  |-  .\/  =  ( join `  K )
125, 11latjcl 14083 . . . 4  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  e.  B )
134, 8, 10, 12syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  ( P  .\/  Q )  e.  B
)
14 simp1r 985 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  W  e.  H )
15 cdleme0.h . . . . 5  |-  H  =  ( LHyp `  K
)
165, 15lhpbase 29317 . . . 4  |-  ( W  e.  H  ->  W  e.  B )
1714, 16syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  W  e.  B )
18 cdleme0.m . . . 4  |-  ./\  =  ( meet `  K )
195, 18latmcl 14084 . . 3  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  B  /\  W  e.  B )  ->  (
( P  .\/  Q
)  ./\  W )  e.  B )
204, 13, 17, 19syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  ( ( P  .\/  Q )  ./\  W )  e.  B )
211, 20syl5eqel 2340 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   ` cfv 4638  (class class class)co 5757   Basecbs 13075   lecple 13142   joincjn 14005   meetcmee 14006   Latclat 14078   Atomscatm 28583   HLchlt 28670   LHypclh 29303
This theorem is referenced by:  cdleme1b  29545  cdleme5  29559  cdleme9  29572  cdleme11g  29584  cdleme11  29589  cdleme35fnpq  29768  cdleme42e  29798  cdlemeg46frv  29844  cdlemg2fv2  29919  cdlemg2m  29923
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fv 4654  df-ov 5760  df-lat 14079  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-lhyp 29307
  Copyright terms: Public domain W3C validator