Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0e Unicode version

Theorem cdleme0e 29536
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 13-Jun-2012.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme0c.3  |-  V  =  ( ( P  .\/  R )  ./\  W )
Assertion
Ref Expression
cdleme0e  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  U  =/=  V )

Proof of Theorem cdleme0e
StepHypRef Expression
1 cdleme0.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2 cdleme0c.3 . . . . 5  |-  V  =  ( ( P  .\/  R )  ./\  W )
31, 2oveq12i 5769 . . . 4  |-  ( U 
./\  V )  =  ( ( ( P 
.\/  Q )  ./\  W )  ./\  ( ( P  .\/  R )  ./\  W ) )
4 simp1l 984 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  HL )
5 hlol 28681 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
64, 5syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  OL )
7 simp21l 1077 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  P  e.  A )
8 simp22 994 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  Q  e.  A )
9 eqid 2256 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
10 cdleme0.j . . . . . . . 8  |-  .\/  =  ( join `  K )
11 cdleme0.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
129, 10, 11hlatjcl 28686 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
134, 7, 8, 12syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
14 simp23l 1081 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  A )
159, 10, 11hlatjcl 28686 . . . . . . 7  |-  ( ( K  e.  HL  /\  P  e.  A  /\  R  e.  A )  ->  ( P  .\/  R
)  e.  ( Base `  K ) )
164, 7, 14, 15syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  .\/  R
)  e.  ( Base `  K ) )
17 simp1r 985 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  H )
18 cdleme0.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
199, 18lhpbase 29317 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2017, 19syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  ( Base `  K ) )
21 cdleme0.m . . . . . . 7  |-  ./\  =  ( meet `  K )
229, 21latmmdir 28555 . . . . . 6  |-  ( ( K  e.  OL  /\  ( ( P  .\/  Q )  e.  ( Base `  K )  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
) )  ->  (
( ( P  .\/  Q )  ./\  ( P  .\/  R ) )  ./\  W )  =  ( ( ( P  .\/  Q
)  ./\  W )  ./\  ( ( P  .\/  R )  ./\  W )
) )
236, 13, 16, 20, 22syl13anc 1189 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( P 
.\/  Q )  ./\  ( P  .\/  R ) )  ./\  W )  =  ( ( ( P  .\/  Q ) 
./\  W )  ./\  ( ( P  .\/  R )  ./\  W )
) )
24 hllat 28683 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
254, 24syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  Lat )
269, 11atbase 28609 . . . . . . . . 9  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
2714, 26syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  ( Base `  K ) )
289, 11atbase 28609 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
297, 28syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  P  e.  ( Base `  K ) )
309, 11atbase 28609 . . . . . . . . 9  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
318, 30syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  Q  e.  ( Base `  K ) )
32 simp3r 989 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  -.  R  .<_  ( P 
.\/  Q ) )
33 cdleme0.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
349, 33, 10latnlej1r 14103 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  R  =/=  Q )
3534necomd 2502 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  Q  =/=  R )
3625, 27, 29, 31, 32, 35syl131anc 1200 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  Q  =/=  R )
37 simp3 962 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  =/=  Q  /\  -.  R  .<_  ( P 
.\/  Q ) ) )
3833, 10, 11hlatcon3 28770 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  -.  P  .<_  ( Q 
.\/  R ) )
394, 7, 8, 14, 37, 38syl131anc 1200 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  -.  P  .<_  ( Q 
.\/  R ) )
4033, 10, 21, 112llnma2 29108 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  ( Q  =/=  R  /\  -.  P  .<_  ( Q  .\/  R
) ) )  -> 
( ( P  .\/  Q )  ./\  ( P  .\/  R ) )  =  P )
414, 8, 14, 7, 36, 39, 40syl132anc 1205 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( P  .\/  Q )  ./\  ( P  .\/  R ) )  =  P )
4241oveq1d 5772 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( P 
.\/  Q )  ./\  ( P  .\/  R ) )  ./\  W )  =  ( P  ./\  W ) )
4323, 42eqtr3d 2290 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( P 
.\/  Q )  ./\  W )  ./\  ( ( P  .\/  R )  ./\  W ) )  =  ( P  ./\  W )
)
443, 43syl5eq 2300 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( U  ./\  V
)  =  ( P 
./\  W ) )
45 simp1 960 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
46 simp21 993 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
47 eqid 2256 . . . . 5  |-  ( 0.
`  K )  =  ( 0. `  K
)
4833, 21, 47, 11, 18lhpmat 29349 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  -> 
( P  ./\  W
)  =  ( 0.
`  K ) )
4945, 46, 48syl2anc 645 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( P  ./\  W
)  =  ( 0.
`  K ) )
5044, 49eqtrd 2288 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( U  ./\  V
)  =  ( 0.
`  K ) )
51 hlatl 28680 . . . 4  |-  ( K  e.  HL  ->  K  e.  AtLat )
524, 51syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  AtLat )
53 simp3l 988 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  P  =/=  Q )
5433, 10, 21, 11, 18, 1lhpat2 29364 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
5545, 46, 8, 53, 54syl112anc 1191 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  U  e.  A )
569, 33, 10latnlej1l 14102 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  R  =/=  P )
5756necomd 2502 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  P  =/=  R )
5825, 27, 29, 31, 32, 57syl131anc 1200 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  P  =/=  R )
5933, 10, 21, 11, 18, 2lhpat2 29364 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R  e.  A  /\  P  =/=  R ) )  ->  V  e.  A
)
6045, 46, 14, 58, 59syl112anc 1191 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  V  e.  A )
6121, 47, 11atnem0 28638 . . 3  |-  ( ( K  e.  AtLat  /\  U  e.  A  /\  V  e.  A )  ->  ( U  =/=  V  <->  ( U  ./\ 
V )  =  ( 0. `  K ) ) )
6252, 55, 60, 61syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  -> 
( U  =/=  V  <->  ( U  ./\  V )  =  ( 0. `  K ) ) )
6350, 62mpbird 225 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) ) )  ->  U  =/=  V )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   Basecbs 13075   lecple 13142   joincjn 14005   meetcmee 14006   0.cp0 14070   Latclat 14078   OLcol 28494   Atomscatm 28583   AtLatcal 28584   HLchlt 28670   LHypclh 29303
This theorem is referenced by:  cdleme3fN  29552  cdleme3g  29553  cdleme11e  29582
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-lhyp 29307
  Copyright terms: Public domain W3C validator