Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0ex1N Unicode version

Theorem cdleme0ex1N 30709
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdleme0ex1N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. u  e.  A  ( u  .<_  ( P  .\/  Q
)  /\  u  .<_  W ) )
Distinct variable groups:    u, A    u, 
.\/    u,  .<_    u, P    u, Q    u, U    u, W
Allowed substitution hints:    H( u)    K( u)   
./\ ( u)

Proof of Theorem cdleme0ex1N
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2l 983 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp2r 984 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  Q  e.  A )
4 simp3 959 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P  =/=  Q )
5 cdleme0.l . . . 4  |-  .<_  =  ( le `  K )
6 cdleme0.j . . . 4  |-  .\/  =  ( join `  K )
7 cdleme0.m . . . 4  |-  ./\  =  ( meet `  K )
8 cdleme0.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdleme0.h . . . 4  |-  H  =  ( LHyp `  K
)
10 cdleme0.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
115, 6, 7, 8, 9, 10lhpat2 30531 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
121, 2, 3, 4, 11syl112anc 1188 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  U  e.  A )
13 simp2ll 1024 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P  e.  A )
145, 6, 7, 8, 9, 10cdlemeulpq 30706 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  U  .<_  ( P  .\/  Q ) )
151, 13, 3, 14syl12anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  U  .<_  ( P  .\/  Q ) )
16 simp1l 981 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  K  e.  HL )
17 hllat 29850 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
1816, 17syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  K  e.  Lat )
19 eqid 2408 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
2019, 6, 8hlatjcl 29853 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
2116, 13, 3, 20syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
22 simp1r 982 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  W  e.  H )
2319, 9lhpbase 30484 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2422, 23syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  W  e.  ( Base `  K )
)
2519, 5, 7latmle2 14465 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
2618, 21, 24, 25syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
2710, 26syl5eqbr 4209 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  U  .<_  W )
28 breq1 4179 . . . 4  |-  ( u  =  U  ->  (
u  .<_  ( P  .\/  Q )  <->  U  .<_  ( P 
.\/  Q ) ) )
29 breq1 4179 . . . 4  |-  ( u  =  U  ->  (
u  .<_  W  <->  U  .<_  W ) )
3028, 29anbi12d 692 . . 3  |-  ( u  =  U  ->  (
( u  .<_  ( P 
.\/  Q )  /\  u  .<_  W )  <->  ( U  .<_  ( P  .\/  Q
)  /\  U  .<_  W ) ) )
3130rspcev 3016 . 2  |-  ( ( U  e.  A  /\  ( U  .<_  ( P 
.\/  Q )  /\  U  .<_  W ) )  ->  E. u  e.  A  ( u  .<_  ( P 
.\/  Q )  /\  u  .<_  W ) )
3212, 15, 27, 31syl12anc 1182 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. u  e.  A  ( u  .<_  ( P  .\/  Q
)  /\  u  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   E.wrex 2671   class class class wbr 4176   ` cfv 5417  (class class class)co 6044   Basecbs 13428   lecple 13495   joincjn 14360   meetcmee 14361   Latclat 14433   Atomscatm 29750   HLchlt 29837   LHypclh 30470
This theorem is referenced by:  cdleme0ex2N  30710
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-p1 14428  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838  df-lhyp 30474
  Copyright terms: Public domain W3C validator