Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0ex1N Unicode version

Theorem cdleme0ex1N 29171
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdleme0ex1N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. u  e.  A  ( u  .<_  ( P  .\/  Q
)  /\  u  .<_  W ) )
Distinct variable groups:    u, A    u, 
.\/    u,  .<_    u, P    u, Q    u, U    u, W
Allowed substitution hints:    H( u)    K( u)   
./\ ( u)

Proof of Theorem cdleme0ex1N
StepHypRef Expression
1 simp1 960 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2l 986 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp2r 987 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  Q  e.  A )
4 simp3 962 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P  =/=  Q )
5 cdleme0.l . . . 4  |-  .<_  =  ( le `  K )
6 cdleme0.j . . . 4  |-  .\/  =  ( join `  K )
7 cdleme0.m . . . 4  |-  ./\  =  ( meet `  K )
8 cdleme0.a . . . 4  |-  A  =  ( Atoms `  K )
9 cdleme0.h . . . 4  |-  H  =  ( LHyp `  K
)
10 cdleme0.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
115, 6, 7, 8, 9, 10lhpat2 28993 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
121, 2, 3, 4, 11syl112anc 1191 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  U  e.  A )
13 simp2ll 1027 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  P  e.  A )
145, 6, 7, 8, 9, 10cdlemeulpq 29168 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  U  .<_  ( P  .\/  Q ) )
151, 13, 3, 14syl12anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  U  .<_  ( P  .\/  Q ) )
16 simp1l 984 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  K  e.  HL )
17 hllat 28312 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
1816, 17syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  K  e.  Lat )
19 eqid 2253 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
2019, 6, 8hlatjcl 28315 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
2116, 13, 3, 20syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
22 simp1r 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  W  e.  H )
2319, 9lhpbase 28946 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2422, 23syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  W  e.  ( Base `  K )
)
2519, 5, 7latmle2 14027 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
2618, 21, 24, 25syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
2710, 26syl5eqbr 3953 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  U  .<_  W )
28 breq1 3923 . . . 4  |-  ( u  =  U  ->  (
u  .<_  ( P  .\/  Q )  <->  U  .<_  ( P 
.\/  Q ) ) )
29 breq1 3923 . . . 4  |-  ( u  =  U  ->  (
u  .<_  W  <->  U  .<_  W ) )
3028, 29anbi12d 694 . . 3  |-  ( u  =  U  ->  (
( u  .<_  ( P 
.\/  Q )  /\  u  .<_  W )  <->  ( U  .<_  ( P  .\/  Q
)  /\  U  .<_  W ) ) )
3130rcla4ev 2821 . 2  |-  ( ( U  e.  A  /\  ( U  .<_  ( P 
.\/  Q )  /\  U  .<_  W ) )  ->  E. u  e.  A  ( u  .<_  ( P 
.\/  Q )  /\  u  .<_  W ) )
3212, 15, 27, 31syl12anc 1185 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  E. u  e.  A  ( u  .<_  ( P  .\/  Q
)  /\  u  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Latclat 13995   Atomscatm 28212   HLchlt 28299   LHypclh 28932
This theorem is referenced by:  cdleme0ex2N  29172
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28125  df-ol 28127  df-oml 28128  df-covers 28215  df-ats 28216  df-atl 28247  df-cvlat 28271  df-hlat 28300  df-lhyp 28936
  Copyright terms: Public domain W3C validator