Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0fN Unicode version

Theorem cdleme0fN 29208
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme0c.3  |-  V  =  ( ( P  .\/  R )  ./\  W )
Assertion
Ref Expression
cdleme0fN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  V  =/=  P )

Proof of Theorem cdleme0fN
StepHypRef Expression
1 cdleme0c.3 . . 3  |-  V  =  ( ( P  .\/  R )  ./\  W )
2 simp1l 984 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  K  e.  HL )
3 hllat 28354 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  K  e.  Lat )
5 simp2l 986 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  P  e.  A )
6 eqid 2253 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
7 cdleme0.a . . . . . . 7  |-  A  =  ( Atoms `  K )
86, 7atbase 28280 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
95, 8syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  P  e.  ( Base `  K )
)
10 simp3r 989 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  R  e.  A )
116, 7atbase 28280 . . . . . 6  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
1210, 11syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  R  e.  ( Base `  K )
)
13 cdleme0.j . . . . . 6  |-  .\/  =  ( join `  K )
146, 13latjcl 14000 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( P  .\/  R )  e.  ( Base `  K
) )
154, 9, 12, 14syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  ( P  .\/  R )  e.  (
Base `  K )
)
16 simp1r 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  W  e.  H )
17 cdleme0.h . . . . . 6  |-  H  =  ( LHyp `  K
)
186, 17lhpbase 28988 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1916, 18syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  W  e.  ( Base `  K )
)
20 cdleme0.l . . . . 5  |-  .<_  =  ( le `  K )
21 cdleme0.m . . . . 5  |-  ./\  =  ( meet `  K )
226, 20, 21latmle2 14027 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  R )  ./\  W )  .<_  W )
234, 15, 19, 22syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  ( ( P  .\/  R )  ./\  W )  .<_  W )
241, 23syl5eqbr 3953 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  V  .<_  W )
25 simp2r 987 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  -.  P  .<_  W )
26 nbrne2 3938 . 2  |-  ( ( V  .<_  W  /\  -.  P  .<_  W )  ->  V  =/=  P
)
2724, 25, 26syl2anc 645 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  V  =/=  P )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Latclat 13995   Atomscatm 28254   HLchlt 28341   LHypclh 28974
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-glb 13953  df-meet 13955  df-lat 13996  df-ats 28258  df-atl 28289  df-cvlat 28313  df-hlat 28342  df-lhyp 28978
  Copyright terms: Public domain W3C validator