Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0fN Unicode version

Theorem cdleme0fN 30225
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme0c.3  |-  V  =  ( ( P  .\/  R )  ./\  W )
Assertion
Ref Expression
cdleme0fN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  V  =/=  P )

Proof of Theorem cdleme0fN
StepHypRef Expression
1 cdleme0c.3 . . 3  |-  V  =  ( ( P  .\/  R )  ./\  W )
2 simp1l 979 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  K  e.  HL )
3 hllat 29371 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  K  e.  Lat )
5 simp2l 981 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  P  e.  A )
6 eqid 2316 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
7 cdleme0.a . . . . . . 7  |-  A  =  ( Atoms `  K )
86, 7atbase 29297 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
95, 8syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  P  e.  ( Base `  K )
)
10 simp3r 984 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  R  e.  A )
116, 7atbase 29297 . . . . . 6  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
1210, 11syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  R  e.  ( Base `  K )
)
13 cdleme0.j . . . . . 6  |-  .\/  =  ( join `  K )
146, 13latjcl 14205 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( P  .\/  R )  e.  ( Base `  K
) )
154, 9, 12, 14syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  ( P  .\/  R )  e.  (
Base `  K )
)
16 simp1r 980 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  W  e.  H )
17 cdleme0.h . . . . . 6  |-  H  =  ( LHyp `  K
)
186, 17lhpbase 30005 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1916, 18syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  W  e.  ( Base `  K )
)
20 cdleme0.l . . . . 5  |-  .<_  =  ( le `  K )
21 cdleme0.m . . . . 5  |-  ./\  =  ( meet `  K )
226, 20, 21latmle2 14232 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  R )  ./\  W )  .<_  W )
234, 15, 19, 22syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  ( ( P  .\/  R )  ./\  W )  .<_  W )
241, 23syl5eqbr 4093 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  V  .<_  W )
25 simp2r 982 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  -.  P  .<_  W )
26 nbrne2 4078 . 2  |-  ( ( V  .<_  W  /\  -.  P  .<_  W )  ->  V  =/=  P
)
2724, 25, 26syl2anc 642 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  R  e.  A )
)  ->  V  =/=  P )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701    =/= wne 2479   class class class wbr 4060   ` cfv 5292  (class class class)co 5900   Basecbs 13195   lecple 13262   joincjn 14127   meetcmee 14128   Latclat 14200   Atomscatm 29271   HLchlt 29358   LHypclh 29991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-undef 6340  df-riota 6346  df-glb 14158  df-meet 14160  df-lat 14201  df-ats 29275  df-atl 29306  df-cvlat 29330  df-hlat 29359  df-lhyp 29995
  Copyright terms: Public domain W3C validator