Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0moN Unicode version

Theorem cdleme0moN 30753
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdleme0moN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( R  =  P  \/  R  =  Q ) )
Distinct variable groups:    A, r    .\/ , r    P, r    Q, r    R, r    U, r
Allowed substitution hints:    H( r)    K( r)   
.<_ ( r)    ./\ ( r)    W( r)

Proof of Theorem cdleme0moN
StepHypRef Expression
1 simp23r 1079 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  R  .<_  W )
2 neanior 2678 . . 3  |-  ( ( R  =/=  P  /\  R  =/=  Q )  <->  -.  ( R  =  P  \/  R  =  Q )
)
3 simpl33 1040 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) )
4 simp23l 1078 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  R  e.  A
)
54adantr 452 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  e.  A )
6 simprl 733 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  =/=  P )
7 simprr 734 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  =/=  Q )
8 simpl32 1039 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  .<_  ( P  .\/  Q ) )
9 simpl1l 1008 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  K  e.  HL )
10 hlcvl 29888 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  CvLat )
119, 10syl 16 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  K  e.  CvLat )
12 simp21l 1074 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  e.  A
)
1312adantr 452 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  P  e.  A )
14 simp22l 1076 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  Q  e.  A
)
1514adantr 452 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  Q  e.  A )
16 simpl31 1038 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  P  =/=  Q )
17 cdleme0.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
18 cdleme0.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
19 cdleme0.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
2017, 18, 19cvlsupr2 29872 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  <->  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
2111, 13, 15, 5, 16, 20syl131anc 1197 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( ( P  .\/  R )  =  ( Q 
.\/  R )  <->  ( R  =/=  P  /\  R  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) ) )
226, 7, 8, 21mpbir3and 1137 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( P  .\/  R
)  =  ( Q 
.\/  R ) )
23 simp1l 981 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  K  e.  HL )
24 simp1r 982 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  W  e.  H
)
25 simp21r 1075 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  -.  P  .<_  W )
26 simp31 993 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  P  =/=  Q
)
27 cdleme0.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
28 cdleme0.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
29 cdleme0.u . . . . . . . . 9  |-  U  =  ( ( P  .\/  Q )  ./\  W )
3018, 19, 27, 17, 28, 29lhpat2 30573 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
3123, 24, 12, 25, 14, 26, 30syl222anc 1200 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  U  e.  A
)
3231adantr 452 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  U  e.  A )
33 simpl1 960 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
34 simpl21 1035 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
35 simpl22 1036 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
3618, 19, 27, 17, 28, 29cdleme02N 30750 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  (
( P  .\/  U
)  =  ( Q 
.\/  U )  /\  U  .<_  W ) )
3736simpld 446 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  ( P  .\/  U )  =  ( Q  .\/  U
) )
3833, 34, 35, 16, 37syl121anc 1189 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  -> 
( P  .\/  U
)  =  ( Q 
.\/  U ) )
39 df-rmo 2700 . . . . . . 7  |-  ( E* r  e.  A ( P  .\/  r )  =  ( Q  .\/  r )  <->  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) )
40 oveq2 6075 . . . . . . . . 9  |-  ( r  =  R  ->  ( P  .\/  r )  =  ( P  .\/  R
) )
41 oveq2 6075 . . . . . . . . 9  |-  ( r  =  R  ->  ( Q  .\/  r )  =  ( Q  .\/  R
) )
4240, 41eqeq12d 2444 . . . . . . . 8  |-  ( r  =  R  ->  (
( P  .\/  r
)  =  ( Q 
.\/  r )  <->  ( P  .\/  R )  =  ( Q  .\/  R ) ) )
43 oveq2 6075 . . . . . . . . 9  |-  ( r  =  U  ->  ( P  .\/  r )  =  ( P  .\/  U
) )
44 oveq2 6075 . . . . . . . . 9  |-  ( r  =  U  ->  ( Q  .\/  r )  =  ( Q  .\/  U
) )
4543, 44eqeq12d 2444 . . . . . . . 8  |-  ( r  =  U  ->  (
( P  .\/  r
)  =  ( Q 
.\/  r )  <->  ( P  .\/  U )  =  ( Q  .\/  U ) ) )
4642, 45rmoi 3237 . . . . . . 7  |-  ( ( E* r  e.  A
( P  .\/  r
)  =  ( Q 
.\/  r )  /\  ( R  e.  A  /\  ( P  .\/  R
)  =  ( Q 
.\/  R ) )  /\  ( U  e.  A  /\  ( P 
.\/  U )  =  ( Q  .\/  U
) ) )  ->  R  =  U )
4739, 46syl3an1br 1223 . . . . . 6  |-  ( ( E* r ( r  e.  A  /\  ( P  .\/  r )  =  ( Q  .\/  r
) )  /\  ( R  e.  A  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  /\  ( U  e.  A  /\  ( P  .\/  U )  =  ( Q  .\/  U ) ) )  ->  R  =  U )
483, 5, 22, 32, 38, 47syl122anc 1193 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  =  U )
4936simprd 450 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  U  .<_  W )
5033, 34, 35, 16, 49syl121anc 1189 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  U  .<_  W )
5148, 50eqbrtrd 4219 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P  .\/  Q
)  /\  E* r
( r  e.  A  /\  ( P  .\/  r
)  =  ( Q 
.\/  r ) ) ) )  /\  ( R  =/=  P  /\  R  =/=  Q ) )  ->  R  .<_  W )
5251ex 424 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( R  =/=  P  /\  R  =/=  Q )  ->  R  .<_  W ) )
532, 52syl5bir 210 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( -.  ( R  =  P  \/  R  =  Q )  ->  R  .<_  W )
)
541, 53mt3d 119 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ( P  =/=  Q  /\  R  .<_  ( P 
.\/  Q )  /\  E* r ( r  e.  A  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( R  =  P  \/  R  =  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   E*wmo 2281    =/= wne 2593   E*wrmo 2695   class class class wbr 4199   ` cfv 5440  (class class class)co 6067   lecple 13519   joincjn 14384   meetcmee 14385   Atomscatm 29792   CvLatclc 29794   HLchlt 29879   LHypclh 30512
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-rep 4307  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rmo 2700  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-id 4485  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-undef 6529  df-riota 6535  df-poset 14386  df-plt 14398  df-lub 14414  df-glb 14415  df-join 14416  df-meet 14417  df-p0 14451  df-p1 14452  df-lat 14458  df-clat 14520  df-oposet 29705  df-ol 29707  df-oml 29708  df-covers 29795  df-ats 29796  df-atl 29827  df-cvlat 29851  df-hlat 29880  df-lhyp 30516
  Copyright terms: Public domain W3C validator