Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0nex Unicode version

Theorem cdleme0nex 30538
Description: Part of proof of Lemma E in [Crawley] p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p  \/ q/0 (i.e. the sublattice from 0 to p  \/ q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a 30459- which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 29592, our  ( P  .\/  r )  =  ( Q  .\/  r ) is a shorter way to express  r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ). Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012.)
Hypotheses
Ref Expression
cdleme0nex.l  |-  .<_  =  ( le `  K )
cdleme0nex.j  |-  .\/  =  ( join `  K )
cdleme0nex.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdleme0nex  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( R  =  P  \/  R  =  Q ) )
Distinct variable groups:    A, r    .\/ , r    .<_ , r    P, r    Q, r    R, r    W, r
Allowed substitution hint:    K( r)

Proof of Theorem cdleme0nex
StepHypRef Expression
1 simp3r 985 . . . 4  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  R  .<_  W )
2 simp12 987 . . . 4  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  R  .<_  ( P  .\/  Q ) )
31, 2jca 518 . . 3  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q
) ) )
4 simp3l 984 . . . . . 6  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  R  e.  A )
5 simp13 988 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
6 ralnex 2638 . . . . . . 7  |-  ( A. r  e.  A  -.  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
75, 6sylibr 203 . . . . . 6  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  A. r  e.  A  -.  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
8 breq1 4128 . . . . . . . . . 10  |-  ( r  =  R  ->  (
r  .<_  W  <->  R  .<_  W ) )
98notbid 285 . . . . . . . . 9  |-  ( r  =  R  ->  ( -.  r  .<_  W  <->  -.  R  .<_  W ) )
10 oveq2 5989 . . . . . . . . . 10  |-  ( r  =  R  ->  ( P  .\/  r )  =  ( P  .\/  R
) )
11 oveq2 5989 . . . . . . . . . 10  |-  ( r  =  R  ->  ( Q  .\/  r )  =  ( Q  .\/  R
) )
1210, 11eqeq12d 2380 . . . . . . . . 9  |-  ( r  =  R  ->  (
( P  .\/  r
)  =  ( Q 
.\/  r )  <->  ( P  .\/  R )  =  ( Q  .\/  R ) ) )
139, 12anbi12d 691 . . . . . . . 8  |-  ( r  =  R  ->  (
( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  ( -.  R  .<_  W  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) ) ) )
1413notbid 285 . . . . . . 7  |-  ( r  =  R  ->  ( -.  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  -.  ( -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R
) ) ) )
1514rspcva 2967 . . . . . 6  |-  ( ( R  e.  A  /\  A. r  e.  A  -.  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  -.  ( -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q 
.\/  R ) ) )
164, 7, 15syl2anc 642 . . . . 5  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  ( -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) ) )
17 simp11 986 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  K  e.  HL )
18 hlcvl 29608 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  CvLat )
1917, 18syl 15 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  K  e.  CvLat
)
20 simp21 989 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  P  e.  A )
21 simp22 990 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  Q  e.  A )
22 simp23 991 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  P  =/=  Q )
23 cdleme0nex.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
24 cdleme0nex.l . . . . . . . 8  |-  .<_  =  ( le `  K )
25 cdleme0nex.j . . . . . . . 8  |-  .\/  =  ( join `  K )
2623, 24, 25cvlsupr2 29592 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  <->  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
2719, 20, 21, 4, 22, 26syl131anc 1196 . . . . . 6  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  <->  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
2827anbi2d 684 . . . . 5  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  <->  ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) ) ) )
2916, 28mtbid 291 . . . 4  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
30 ianor 474 . . . . 5  |-  ( -.  ( ( R  =/= 
P  /\  R  =/=  Q )  /\  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) )  <->  ( -.  ( R  =/=  P  /\  R  =/=  Q
)  \/  -.  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
31 df-3an 937 . . . . . . . 8  |-  ( ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q
) )  <->  ( ( R  =/=  P  /\  R  =/=  Q )  /\  R  .<_  ( P  .\/  Q
) ) )
3231anbi2i 675 . . . . . . 7  |-  ( ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) )  <->  ( -.  R  .<_  W  /\  ( ( R  =/=  P  /\  R  =/=  Q )  /\  R  .<_  ( P  .\/  Q ) ) ) )
33 an12 772 . . . . . . 7  |-  ( ( -.  R  .<_  W  /\  ( ( R  =/= 
P  /\  R  =/=  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  <->  ( ( R  =/=  P  /\  R  =/=  Q )  /\  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
3432, 33bitri 240 . . . . . 6  |-  ( ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) )  <->  ( ( R  =/=  P  /\  R  =/=  Q )  /\  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
3534notbii 287 . . . . 5  |-  ( -.  ( -.  R  .<_  W  /\  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) )  <->  -.  ( ( R  =/=  P  /\  R  =/=  Q )  /\  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
36 pm4.62 408 . . . . 5  |-  ( ( ( R  =/=  P  /\  R  =/=  Q
)  ->  -.  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) )  <->  ( -.  ( R  =/=  P  /\  R  =/=  Q
)  \/  -.  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
3730, 35, 363bitr4ri 269 . . . 4  |-  ( ( ( R  =/=  P  /\  R  =/=  Q
)  ->  -.  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) )  <->  -.  ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
3829, 37sylibr 203 . . 3  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( R  =/=  P  /\  R  =/=  Q )  ->  -.  ( -.  R  .<_  W  /\  R  .<_  ( P 
.\/  Q ) ) ) )
393, 38mt2d 109 . 2  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  ( R  =/=  P  /\  R  =/=  Q ) )
40 neanior 2614 . . 3  |-  ( ( R  =/=  P  /\  R  =/=  Q )  <->  -.  ( R  =  P  \/  R  =  Q )
)
4140con2bii 322 . 2  |-  ( ( R  =  P  \/  R  =  Q )  <->  -.  ( R  =/=  P  /\  R  =/=  Q
) )
4239, 41sylibr 203 1  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( R  =  P  \/  R  =  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    =/= wne 2529   A.wral 2628   E.wrex 2629   class class class wbr 4125   ` cfv 5358  (class class class)co 5981   lecple 13423   joincjn 14288   Atomscatm 29512   CvLatclc 29514   HLchlt 29599
This theorem is referenced by:  cdleme18c  30541  cdleme18d  30543  cdlemg17b  30910  cdlemg17h  30916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-undef 6440  df-riota 6446  df-poset 14290  df-plt 14302  df-lub 14318  df-join 14320  df-lat 14362  df-covers 29515  df-ats 29516  df-atl 29547  df-cvlat 29571  df-hlat 29600
  Copyright terms: Public domain W3C validator