Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0nex Unicode version

Theorem cdleme0nex 30772
Description: Part of proof of Lemma E in [Crawley] p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p  \/ q/0 (i.e. the sublattice from 0 to p  \/ q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a 30693- which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 29826, our  ( P  .\/  r )  =  ( Q  .\/  r ) is a shorter way to express  r  =/=  P  /\  r  =/=  Q  /\  r  .<_  ( P 
.\/  Q ). Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012.)
Hypotheses
Ref Expression
cdleme0nex.l  |-  .<_  =  ( le `  K )
cdleme0nex.j  |-  .\/  =  ( join `  K )
cdleme0nex.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdleme0nex  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( R  =  P  \/  R  =  Q ) )
Distinct variable groups:    A, r    .\/ , r    .<_ , r    P, r    Q, r    R, r    W, r
Allowed substitution hint:    K( r)

Proof of Theorem cdleme0nex
StepHypRef Expression
1 simp3r 986 . . . 4  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  R  .<_  W )
2 simp12 988 . . . 4  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  R  .<_  ( P  .\/  Q ) )
31, 2jca 519 . . 3  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q
) ) )
4 simp3l 985 . . . . . 6  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  R  e.  A )
5 simp13 989 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
6 ralnex 2676 . . . . . . 7  |-  ( A. r  e.  A  -.  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) )
75, 6sylibr 204 . . . . . 6  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  A. r  e.  A  -.  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
8 breq1 4175 . . . . . . . . . 10  |-  ( r  =  R  ->  (
r  .<_  W  <->  R  .<_  W ) )
98notbid 286 . . . . . . . . 9  |-  ( r  =  R  ->  ( -.  r  .<_  W  <->  -.  R  .<_  W ) )
10 oveq2 6048 . . . . . . . . . 10  |-  ( r  =  R  ->  ( P  .\/  r )  =  ( P  .\/  R
) )
11 oveq2 6048 . . . . . . . . . 10  |-  ( r  =  R  ->  ( Q  .\/  r )  =  ( Q  .\/  R
) )
1210, 11eqeq12d 2418 . . . . . . . . 9  |-  ( r  =  R  ->  (
( P  .\/  r
)  =  ( Q 
.\/  r )  <->  ( P  .\/  R )  =  ( Q  .\/  R ) ) )
139, 12anbi12d 692 . . . . . . . 8  |-  ( r  =  R  ->  (
( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  ( -.  R  .<_  W  /\  ( P 
.\/  R )  =  ( Q  .\/  R
) ) ) )
1413notbid 286 . . . . . . 7  |-  ( r  =  R  ->  ( -.  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  -.  ( -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R
) ) ) )
1514rspcva 3010 . . . . . 6  |-  ( ( R  e.  A  /\  A. r  e.  A  -.  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  ->  -.  ( -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q 
.\/  R ) ) )
164, 7, 15syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  ( -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) ) )
17 simp11 987 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  K  e.  HL )
18 hlcvl 29842 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  CvLat )
1917, 18syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  K  e.  CvLat
)
20 simp21 990 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  P  e.  A )
21 simp22 991 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  Q  e.  A )
22 simp23 992 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  P  =/=  Q )
23 cdleme0nex.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
24 cdleme0nex.l . . . . . . . 8  |-  .<_  =  ( le `  K )
25 cdleme0nex.j . . . . . . . 8  |-  .\/  =  ( join `  K )
2623, 24, 25cvlsupr2 29826 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  P  =/=  Q
)  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  <->  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
2719, 20, 21, 4, 22, 26syl131anc 1197 . . . . . 6  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( P  .\/  R )  =  ( Q  .\/  R
)  <->  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
2827anbi2d 685 . . . . 5  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( -.  R  .<_  W  /\  ( P  .\/  R )  =  ( Q  .\/  R ) )  <->  ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q ) ) ) ) )
2916, 28mtbid 292 . . . 4  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
30 ianor 475 . . . . 5  |-  ( -.  ( ( R  =/= 
P  /\  R  =/=  Q )  /\  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) )  <->  ( -.  ( R  =/=  P  /\  R  =/=  Q
)  \/  -.  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
31 df-3an 938 . . . . . . . 8  |-  ( ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P  .\/  Q
) )  <->  ( ( R  =/=  P  /\  R  =/=  Q )  /\  R  .<_  ( P  .\/  Q
) ) )
3231anbi2i 676 . . . . . . 7  |-  ( ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) )  <->  ( -.  R  .<_  W  /\  ( ( R  =/=  P  /\  R  =/=  Q )  /\  R  .<_  ( P  .\/  Q ) ) ) )
33 an12 773 . . . . . . 7  |-  ( ( -.  R  .<_  W  /\  ( ( R  =/= 
P  /\  R  =/=  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  <->  ( ( R  =/=  P  /\  R  =/=  Q )  /\  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
3432, 33bitri 241 . . . . . 6  |-  ( ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) )  <->  ( ( R  =/=  P  /\  R  =/=  Q )  /\  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
3534notbii 288 . . . . 5  |-  ( -.  ( -.  R  .<_  W  /\  ( R  =/= 
P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) )  <->  -.  ( ( R  =/=  P  /\  R  =/=  Q )  /\  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
36 pm4.62 409 . . . . 5  |-  ( ( ( R  =/=  P  /\  R  =/=  Q
)  ->  -.  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) )  <->  ( -.  ( R  =/=  P  /\  R  =/=  Q
)  \/  -.  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) ) )
3730, 35, 363bitr4ri 270 . . . 4  |-  ( ( ( R  =/=  P  /\  R  =/=  Q
)  ->  -.  ( -.  R  .<_  W  /\  R  .<_  ( P  .\/  Q ) ) )  <->  -.  ( -.  R  .<_  W  /\  ( R  =/=  P  /\  R  =/=  Q  /\  R  .<_  ( P 
.\/  Q ) ) ) )
3829, 37sylibr 204 . . 3  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( R  =/=  P  /\  R  =/=  Q )  ->  -.  ( -.  R  .<_  W  /\  R  .<_  ( P 
.\/  Q ) ) ) )
393, 38mt2d 111 . 2  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  -.  ( R  =/=  P  /\  R  =/=  Q ) )
40 neanior 2652 . . 3  |-  ( ( R  =/=  P  /\  R  =/=  Q )  <->  -.  ( R  =  P  \/  R  =  Q )
)
4140con2bii 323 . 2  |-  ( ( R  =  P  \/  R  =  Q )  <->  -.  ( R  =/=  P  /\  R  =/=  Q
) )
4239, 41sylibr 204 1  |-  ( ( ( K  e.  HL  /\  R  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )  /\  ( P  e.  A  /\  Q  e.  A  /\  P  =/= 
Q )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( R  =  P  \/  R  =  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   lecple 13491   joincjn 14356   Atomscatm 29746   CvLatclc 29748   HLchlt 29833
This theorem is referenced by:  cdleme18c  30775  cdleme18d  30777  cdlemg17b  31144  cdlemg17h  31150
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-join 14388  df-lat 14430  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834
  Copyright terms: Public domain W3C validator