Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1 Unicode version

Theorem cdleme1 30489
Description: Part of proof of Lemma E in [Crawley] p. 113.  F represents their f(r). Here we show r  \/ f(r) = r  \/ u (7th through 5th lines from bottom on p. 113). (Contributed by NM, 4-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R  .\/  U ) )

Proof of Theorem cdleme1
StepHypRef Expression
1 simpll 730 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  HL )
2 simpr3l 1016 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  A )
3 hllat 29626 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
43ad2antrr 706 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  Lat )
5 eqid 2285 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
6 cdleme1.a . . . . . . 7  |-  A  =  ( Atoms `  K )
75, 6atbase 29552 . . . . . 6  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
82, 7syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  ( Base `  K )
)
9 cdleme1.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
10 simpr1 961 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  A )
115, 6atbase 29552 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1210, 11syl 15 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  ( Base `  K )
)
13 simpr2 962 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  A )
145, 6atbase 29552 . . . . . . . . 9  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
1513, 14syl 15 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  ( Base `  K )
)
16 cdleme1.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
175, 16latjcl 14158 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
184, 12, 15, 17syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
19 cdleme1.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
205, 19lhpbase 30260 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2120ad2antlr 707 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  W  e.  ( Base `  K )
)
22 cdleme1.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
235, 22latmcl 14159 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K ) )
244, 18, 21, 23syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K ) )
259, 24syl5eqel 2369 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  e.  ( Base `  K )
)
265, 16latjcl 14158 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  ( R  .\/  U )  e.  ( Base `  K
) )
274, 8, 25, 26syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  U )  e.  (
Base `  K )
)
285, 16latjcl 14158 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( P  .\/  R )  e.  ( Base `  K
) )
294, 12, 8, 28syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  R )  e.  (
Base `  K )
)
305, 22latmcl 14159 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  R )  ./\  W )  e.  ( Base `  K ) )
314, 29, 21, 30syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P  .\/  R )  ./\  W )  e.  ( Base `  K ) )
325, 16latjcl 14158 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( P  .\/  R
)  ./\  W )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  (
Base `  K )
)
334, 15, 31, 32syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
)  e.  ( Base `  K ) )
34 cdleme1.l . . . . . 6  |-  .<_  =  ( le `  K )
355, 34, 16latlej1 14168 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  R  .<_  ( R  .\/  U
) )
364, 8, 25, 35syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  .<_  ( R  .\/  U ) )
375, 34, 16, 22, 6atmod3i1 30126 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  ( R  .\/  U
)  e.  ( Base `  K )  /\  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  (
Base `  K )
)  /\  R  .<_  ( R  .\/  U ) )  ->  ( R  .\/  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )  =  ( ( R  .\/  U )  ./\  ( R  .\/  ( Q  .\/  (
( P  .\/  R
)  ./\  W )
) ) ) )
381, 2, 27, 33, 36, 37syl131anc 1195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )  =  ( ( R  .\/  U )  ./\  ( R  .\/  ( Q  .\/  (
( P  .\/  R
)  ./\  W )
) ) ) )
395, 34, 16latlej2 14169 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  R  .<_  ( P  .\/  R
) )
404, 12, 8, 39syl3anc 1182 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  .<_  ( P  .\/  R ) )
415, 34, 16, 22, 6atmod3i1 30126 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  ( P  .\/  R
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  R  .<_  ( P  .\/  R
) )  ->  ( R  .\/  ( ( P 
.\/  R )  ./\  W ) )  =  ( ( P  .\/  R
)  ./\  ( R  .\/  W ) ) )
421, 2, 29, 21, 40, 41syl131anc 1195 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  ( ( P  .\/  R )  ./\  W )
)  =  ( ( P  .\/  R ) 
./\  ( R  .\/  W ) ) )
43 eqid 2285 . . . . . . . . . 10  |-  ( 1.
`  K )  =  ( 1. `  K
)
4434, 16, 43, 6, 19lhpjat2 30283 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  .\/  W
)  =  ( 1.
`  K ) )
45443ad2antr3 1122 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  W )  =  ( 1. `  K ) )
4645oveq2d 5876 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P  .\/  R )  ./\  ( R  .\/  W ) )  =  ( ( P  .\/  R ) 
./\  ( 1. `  K ) ) )
47 hlol 29624 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  OL )
4847ad2antrr 706 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  OL )
495, 22, 43olm11 29490 . . . . . . . 8  |-  ( ( K  e.  OL  /\  ( P  .\/  R )  e.  ( Base `  K
) )  ->  (
( P  .\/  R
)  ./\  ( 1. `  K ) )  =  ( P  .\/  R
) )
5048, 29, 49syl2anc 642 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P  .\/  R )  ./\  ( 1. `  K ) )  =  ( P 
.\/  R ) )
5142, 46, 503eqtrd 2321 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  ( ( P  .\/  R )  ./\  W )
)  =  ( P 
.\/  R ) )
5251oveq2d 5876 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( Q  .\/  ( R  .\/  (
( P  .\/  R
)  ./\  W )
) )  =  ( Q  .\/  ( P 
.\/  R ) ) )
535, 16latj12 14204 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  (
( P  .\/  R
)  ./\  W )  e.  ( Base `  K
) ) )  -> 
( Q  .\/  ( R  .\/  ( ( P 
.\/  R )  ./\  W ) ) )  =  ( R  .\/  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) ) ) )
544, 15, 8, 31, 53syl13anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( Q  .\/  ( R  .\/  (
( P  .\/  R
)  ./\  W )
) )  =  ( R  .\/  ( Q 
.\/  ( ( P 
.\/  R )  ./\  W ) ) ) )
555, 16latj13 14206 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) ) )  -> 
( Q  .\/  ( P  .\/  R ) )  =  ( R  .\/  ( P  .\/  Q ) ) )
564, 15, 12, 8, 55syl13anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( Q  .\/  ( P  .\/  R
) )  =  ( R  .\/  ( P 
.\/  Q ) ) )
5752, 54, 563eqtr3rd 2326 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  ( P  .\/  Q
) )  =  ( R  .\/  ( Q 
.\/  ( ( P 
.\/  R )  ./\  W ) ) ) )
5857oveq2d 5876 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R  .\/  U )  ./\  ( R  .\/  ( P 
.\/  Q ) ) )  =  ( ( R  .\/  U ) 
./\  ( R  .\/  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) ) ) )
5934, 16, 22, 6, 19, 9cdlemeulpq 30482 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  U  .<_  ( P  .\/  Q ) )
60593adantr3 1116 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  .<_  ( P  .\/  Q ) )
615, 34, 16latjlej2 14174 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( U  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  R  e.  ( Base `  K )
) )  ->  ( U  .<_  ( P  .\/  Q )  ->  ( R  .\/  U )  .<_  ( R 
.\/  ( P  .\/  Q ) ) ) )
624, 25, 18, 8, 61syl13anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( U  .<_  ( P  .\/  Q
)  ->  ( R  .\/  U )  .<_  ( R 
.\/  ( P  .\/  Q ) ) ) )
6360, 62mpd 14 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  U )  .<_  ( R 
.\/  ( P  .\/  Q ) ) )
645, 16latjcl 14158 . . . . . 6  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( R  .\/  ( P  .\/  Q ) )  e.  (
Base `  K )
)
654, 8, 18, 64syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  ( P  .\/  Q
) )  e.  (
Base `  K )
)
665, 34, 22latleeqm1 14187 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  .\/  U )  e.  ( Base `  K
)  /\  ( R  .\/  ( P  .\/  Q
) )  e.  (
Base `  K )
)  ->  ( ( R  .\/  U )  .<_  ( R  .\/  ( P 
.\/  Q ) )  <-> 
( ( R  .\/  U )  ./\  ( R  .\/  ( P  .\/  Q
) ) )  =  ( R  .\/  U
) ) )
674, 27, 65, 66syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R  .\/  U )  .<_  ( R  .\/  ( P 
.\/  Q ) )  <-> 
( ( R  .\/  U )  ./\  ( R  .\/  ( P  .\/  Q
) ) )  =  ( R  .\/  U
) ) )
6863, 67mpbid 201 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R  .\/  U )  ./\  ( R  .\/  ( P 
.\/  Q ) ) )  =  ( R 
.\/  U ) )
6938, 58, 683eqtr2rd 2324 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  U )  =  ( R  .\/  ( ( R  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) ) )
70 cdleme1.f . . 3  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
7170oveq2i 5871 . 2  |-  ( R 
.\/  F )  =  ( R  .\/  (
( R  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
7269, 71syl6reqr 2336 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R  .\/  U ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   class class class wbr 4025   ` cfv 5257  (class class class)co 5860   Basecbs 13150   lecple 13217   joincjn 14080   meetcmee 14081   1.cp1 14146   Latclat 14153   OLcol 29437   Atomscatm 29526   HLchlt 29613   LHypclh 30246
This theorem is referenced by:  cdleme2  30490  cdleme3b  30491  cdleme3c  30492  cdleme5  30502  cdleme11  30532  cdleme12  30533  cdleme16c  30542  cdleme20g  30577  cdleme35a  30710  cdleme36a  30722
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-undef 6300  df-riota 6306  df-poset 14082  df-plt 14094  df-lub 14110  df-glb 14111  df-join 14112  df-meet 14113  df-p0 14147  df-p1 14148  df-lat 14154  df-clat 14216  df-oposet 29439  df-ol 29441  df-oml 29442  df-covers 29529  df-ats 29530  df-atl 29561  df-cvlat 29585  df-hlat 29614  df-psubsp 29765  df-pmap 29766  df-padd 30058  df-lhyp 30250
  Copyright terms: Public domain W3C validator