Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1 Unicode version

Theorem cdleme1 29105
Description: Part of proof of Lemma E in [Crawley] p. 113.  F represents their f(r). Here we show r  \/ f(r) = r  \/ u (7th through 5th lines from bottom on p. 113). (Contributed by NM, 4-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R  .\/  U ) )

Proof of Theorem cdleme1
StepHypRef Expression
1 simpll 733 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  HL )
2 simpr3l 1021 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  A )
3 hllat 28242 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
43ad2antrr 709 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  Lat )
5 eqid 2253 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
6 cdleme1.a . . . . . . 7  |-  A  =  ( Atoms `  K )
75, 6atbase 28168 . . . . . 6  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
82, 7syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  ( Base `  K )
)
9 cdleme1.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
10 simpr1 966 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  A )
115, 6atbase 28168 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1210, 11syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  ( Base `  K )
)
13 simpr2 967 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  A )
145, 6atbase 28168 . . . . . . . . 9  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
1513, 14syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  ( Base `  K )
)
16 cdleme1.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
175, 16latjcl 14000 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
184, 12, 15, 17syl3anc 1187 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
19 cdleme1.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
205, 19lhpbase 28876 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2120ad2antlr 710 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  W  e.  ( Base `  K )
)
22 cdleme1.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
235, 22latmcl 14001 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K ) )
244, 18, 21, 23syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K ) )
259, 24syl5eqel 2337 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  e.  ( Base `  K )
)
265, 16latjcl 14000 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  ( R  .\/  U )  e.  ( Base `  K
) )
274, 8, 25, 26syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  U )  e.  (
Base `  K )
)
285, 16latjcl 14000 . . . . . . 7  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  ( P  .\/  R )  e.  ( Base `  K
) )
294, 12, 8, 28syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  R )  e.  (
Base `  K )
)
305, 22latmcl 14001 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  R )  ./\  W )  e.  ( Base `  K ) )
314, 29, 21, 30syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P  .\/  R )  ./\  W )  e.  ( Base `  K ) )
325, 16latjcl 14000 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  (
( P  .\/  R
)  ./\  W )  e.  ( Base `  K
) )  ->  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  (
Base `  K )
)
334, 15, 31, 32syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
)  e.  ( Base `  K ) )
34 cdleme1.l . . . . . 6  |-  .<_  =  ( le `  K )
355, 34, 16latlej1 14010 . . . . 5  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  U  e.  ( Base `  K
) )  ->  R  .<_  ( R  .\/  U
) )
364, 8, 25, 35syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  .<_  ( R  .\/  U ) )
375, 34, 16, 22, 6atmod3i1 28742 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  ( R  .\/  U
)  e.  ( Base `  K )  /\  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  (
Base `  K )
)  /\  R  .<_  ( R  .\/  U ) )  ->  ( R  .\/  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )  =  ( ( R  .\/  U )  ./\  ( R  .\/  ( Q  .\/  (
( P  .\/  R
)  ./\  W )
) ) ) )
381, 2, 27, 33, 36, 37syl131anc 1200 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )  =  ( ( R  .\/  U )  ./\  ( R  .\/  ( Q  .\/  (
( P  .\/  R
)  ./\  W )
) ) ) )
395, 34, 16latlej2 14011 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) )  ->  R  .<_  ( P  .\/  R
) )
404, 12, 8, 39syl3anc 1187 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  .<_  ( P  .\/  R ) )
415, 34, 16, 22, 6atmod3i1 28742 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  ( P  .\/  R
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  R  .<_  ( P  .\/  R
) )  ->  ( R  .\/  ( ( P 
.\/  R )  ./\  W ) )  =  ( ( P  .\/  R
)  ./\  ( R  .\/  W ) ) )
421, 2, 29, 21, 40, 41syl131anc 1200 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  ( ( P  .\/  R )  ./\  W )
)  =  ( ( P  .\/  R ) 
./\  ( R  .\/  W ) ) )
43 eqid 2253 . . . . . . . . . 10  |-  ( 1.
`  K )  =  ( 1. `  K
)
4434, 16, 43, 6, 19lhpjat2 28899 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  .\/  W
)  =  ( 1.
`  K ) )
45443ad2antr3 1127 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  W )  =  ( 1. `  K ) )
4645oveq2d 5726 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P  .\/  R )  ./\  ( R  .\/  W ) )  =  ( ( P  .\/  R ) 
./\  ( 1. `  K ) ) )
47 hlol 28240 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  OL )
4847ad2antrr 709 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  OL )
495, 22, 43olm11 28106 . . . . . . . 8  |-  ( ( K  e.  OL  /\  ( P  .\/  R )  e.  ( Base `  K
) )  ->  (
( P  .\/  R
)  ./\  ( 1. `  K ) )  =  ( P  .\/  R
) )
5048, 29, 49syl2anc 645 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P  .\/  R )  ./\  ( 1. `  K ) )  =  ( P 
.\/  R ) )
5142, 46, 503eqtrd 2289 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  ( ( P  .\/  R )  ./\  W )
)  =  ( P 
.\/  R ) )
5251oveq2d 5726 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( Q  .\/  ( R  .\/  (
( P  .\/  R
)  ./\  W )
) )  =  ( Q  .\/  ( P 
.\/  R ) ) )
535, 16latj12 14046 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  (
( P  .\/  R
)  ./\  W )  e.  ( Base `  K
) ) )  -> 
( Q  .\/  ( R  .\/  ( ( P 
.\/  R )  ./\  W ) ) )  =  ( R  .\/  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) ) ) )
544, 15, 8, 31, 53syl13anc 1189 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( Q  .\/  ( R  .\/  (
( P  .\/  R
)  ./\  W )
) )  =  ( R  .\/  ( Q 
.\/  ( ( P 
.\/  R )  ./\  W ) ) ) )
555, 16latj13 14048 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( Q  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  R  e.  ( Base `  K
) ) )  -> 
( Q  .\/  ( P  .\/  R ) )  =  ( R  .\/  ( P  .\/  Q ) ) )
564, 15, 12, 8, 55syl13anc 1189 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( Q  .\/  ( P  .\/  R
) )  =  ( R  .\/  ( P 
.\/  Q ) ) )
5752, 54, 563eqtr3rd 2294 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  ( P  .\/  Q
) )  =  ( R  .\/  ( Q 
.\/  ( ( P 
.\/  R )  ./\  W ) ) ) )
5857oveq2d 5726 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R  .\/  U )  ./\  ( R  .\/  ( P 
.\/  Q ) ) )  =  ( ( R  .\/  U ) 
./\  ( R  .\/  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) ) ) )
5934, 16, 22, 6, 19, 9cdlemeulpq 29098 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  U  .<_  ( P  .\/  Q ) )
60593adantr3 1121 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  .<_  ( P  .\/  Q ) )
615, 34, 16latjlej2 14016 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( U  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  R  e.  ( Base `  K )
) )  ->  ( U  .<_  ( P  .\/  Q )  ->  ( R  .\/  U )  .<_  ( R 
.\/  ( P  .\/  Q ) ) ) )
624, 25, 18, 8, 61syl13anc 1189 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( U  .<_  ( P  .\/  Q
)  ->  ( R  .\/  U )  .<_  ( R 
.\/  ( P  .\/  Q ) ) ) )
6360, 62mpd 16 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  U )  .<_  ( R 
.\/  ( P  .\/  Q ) ) )
645, 16latjcl 14000 . . . . . 6  |-  ( ( K  e.  Lat  /\  R  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( R  .\/  ( P  .\/  Q ) )  e.  (
Base `  K )
)
654, 8, 18, 64syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  ( P  .\/  Q
) )  e.  (
Base `  K )
)
665, 34, 22latleeqm1 14029 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  .\/  U )  e.  ( Base `  K
)  /\  ( R  .\/  ( P  .\/  Q
) )  e.  (
Base `  K )
)  ->  ( ( R  .\/  U )  .<_  ( R  .\/  ( P 
.\/  Q ) )  <-> 
( ( R  .\/  U )  ./\  ( R  .\/  ( P  .\/  Q
) ) )  =  ( R  .\/  U
) ) )
674, 27, 65, 66syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R  .\/  U )  .<_  ( R  .\/  ( P 
.\/  Q ) )  <-> 
( ( R  .\/  U )  ./\  ( R  .\/  ( P  .\/  Q
) ) )  =  ( R  .\/  U
) ) )
6863, 67mpbid 203 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R  .\/  U )  ./\  ( R  .\/  ( P 
.\/  Q ) ) )  =  ( R 
.\/  U ) )
6938, 58, 683eqtr2rd 2292 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  U )  =  ( R  .\/  ( ( R  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) ) )
70 cdleme1.f . . 3  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
7170oveq2i 5721 . 2  |-  ( R 
.\/  F )  =  ( R  .\/  (
( R  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) ) )
7269, 71syl6reqr 2304 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R  .\/  U ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   1.cp1 13988   Latclat 13995   OLcol 28053   Atomscatm 28142   HLchlt 28229   LHypclh 28862
This theorem is referenced by:  cdleme2  29106  cdleme3b  29107  cdleme3c  29108  cdleme5  29118  cdleme11  29148  cdleme12  29149  cdleme16c  29158  cdleme20g  29193  cdleme35a  29326  cdleme36a  29338
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28055  df-ol 28057  df-oml 28058  df-covers 28145  df-ats 28146  df-atl 28177  df-cvlat 28201  df-hlat 28230  df-psubsp 28381  df-pmap 28382  df-padd 28674  df-lhyp 28866
  Copyright terms: Public domain W3C validator