Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11e Unicode version

Theorem cdleme11e 29731
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 29738. (Contributed by NM, 13-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l  |-  .<_  =  ( le `  K )
cdleme11.j  |-  .\/  =  ( join `  K )
cdleme11.m  |-  ./\  =  ( meet `  K )
cdleme11.a  |-  A  =  ( Atoms `  K )
cdleme11.h  |-  H  =  ( LHyp `  K
)
cdleme11.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme11.c  |-  C  =  ( ( P  .\/  S )  ./\  W )
cdleme11.d  |-  D  =  ( ( P  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme11e  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  C  =/=  D )

Proof of Theorem cdleme11e
StepHypRef Expression
1 simp11 985 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 986 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp22 989 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  T  e.  A )
4 simp21 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
5 simp11l 1066 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  K  e.  HL )
6 hllat 28832 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
75, 6syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  K  e.  Lat )
8 simp12l 1068 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  P  e.  A )
9 eqid 2284 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
10 cdleme11.a . . . . . 6  |-  A  =  ( Atoms `  K )
119, 10atbase 28758 . . . . 5  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
128, 11syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  P  e.  ( Base `  K
) )
13 simp21l 1072 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  S  e.  A )
149, 10atbase 28758 . . . . 5  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1513, 14syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  S  e.  ( Base `  K
) )
169, 10atbase 28758 . . . . 5  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
173, 16syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  T  e.  ( Base `  K
) )
18 simp1 955 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A ) )
19 simp2 956 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  (
( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
) )
20 simp32 992 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
21 simp33 993 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  U  .<_  ( S  .\/  T
) )
22 cdleme11.l . . . . . 6  |-  .<_  =  ( le `  K )
23 cdleme11.j . . . . . 6  |-  .\/  =  ( join `  K )
24 cdleme11.m . . . . . 6  |-  ./\  =  ( meet `  K )
25 cdleme11.h . . . . . 6  |-  H  =  ( LHyp `  K
)
26 cdleme11.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2722, 23, 24, 10, 25, 26cdleme11c 29729 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  U  .<_  ( S  .\/  T ) ) )  ->  -.  P  .<_  ( S  .\/  T ) )
2818, 19, 20, 21, 27syl112anc 1186 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  -.  P  .<_  ( S  .\/  T ) )
299, 22, 23latnlej1r 14172 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  S  e.  ( Base `  K )  /\  T  e.  ( Base `  K
) )  /\  -.  P  .<_  ( S  .\/  T ) )  ->  P  =/=  T )
307, 12, 15, 17, 28, 29syl131anc 1195 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  P  =/=  T )
31 simp31 991 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  S  =/=  T )
3222, 23, 10hlatcon2 28920 . . . 4  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  P  e.  A
)  /\  ( S  =/=  T  /\  -.  P  .<_  ( S  .\/  T
) ) )  ->  -.  S  .<_  ( P 
.\/  T ) )
335, 13, 3, 8, 31, 28, 32syl132anc 1200 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  -.  S  .<_  ( P  .\/  T ) )
34 cdleme11.d . . . 4  |-  D  =  ( ( P  .\/  T )  ./\  W )
35 cdleme11.c . . . 4  |-  C  =  ( ( P  .\/  S )  ./\  W )
3622, 23, 24, 10, 25, 34, 35cdleme0e 29685 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  T  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  T  /\  -.  S  .<_  ( P  .\/  T ) ) )  ->  D  =/=  C )
371, 2, 3, 4, 30, 33, 36syl132anc 1200 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  D  =/=  C )
3837necomd 2530 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A
)  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  P  =/=  Q
)  /\  ( S  =/=  T  /\  -.  S  .<_  ( P  .\/  Q
)  /\  U  .<_  ( S  .\/  T ) ) )  ->  C  =/=  D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1685    =/= wne 2447   class class class wbr 4024   ` cfv 5221  (class class class)co 5820   Basecbs 13144   lecple 13211   joincjn 14074   meetcmee 14075   Latclat 14147   Atomscatm 28732   HLchlt 28819   LHypclh 29452
This theorem is referenced by:  cdleme11l  29737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-1st 6084  df-2nd 6085  df-iota 6253  df-undef 6292  df-riota 6300  df-poset 14076  df-plt 14088  df-lub 14104  df-glb 14105  df-join 14106  df-meet 14107  df-p0 14141  df-p1 14142  df-lat 14148  df-clat 14210  df-oposet 28645  df-ol 28647  df-oml 28648  df-covers 28735  df-ats 28736  df-atl 28767  df-cvlat 28791  df-hlat 28820  df-psubsp 28971  df-pmap 28972  df-padd 29264  df-lhyp 29456
  Copyright terms: Public domain W3C validator