Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11h Unicode version

Theorem cdleme11h 29705
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 29709. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l  |-  .<_  =  ( le `  K )
cdleme11.j  |-  .\/  =  ( join `  K )
cdleme11.m  |-  ./\  =  ( meet `  K )
cdleme11.a  |-  A  =  ( Atoms `  K )
cdleme11.h  |-  H  =  ( LHyp `  K
)
cdleme11.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme11.c  |-  C  =  ( ( P  .\/  S )  ./\  W )
cdleme11.d  |-  D  =  ( ( P  .\/  T )  ./\  W )
cdleme11.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
Assertion
Ref Expression
cdleme11h  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  F  =/=  Q )

Proof of Theorem cdleme11h
StepHypRef Expression
1 simp1 960 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp21l 1077 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  P  e.  A )
3 simp23 995 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  S  e.  A )
4 simp22l 1079 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  Q  e.  A )
5 simp22r 1080 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  -.  Q  .<_  W )
6 cdleme11.l . . . . . 6  |-  .<_  =  ( le `  K )
7 cdleme11.j . . . . . 6  |-  .\/  =  ( join `  K )
8 cdleme11.m . . . . . 6  |-  ./\  =  ( meet `  K )
9 cdleme11.a . . . . . 6  |-  A  =  ( Atoms `  K )
10 cdleme11.h . . . . . 6  |-  H  =  ( LHyp `  K
)
11 cdleme11.c . . . . . 6  |-  C  =  ( ( P  .\/  S )  ./\  W )
126, 7, 8, 9, 10, 11cdleme0c 29652 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  S  e.  A )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  C  =/=  Q )
131, 2, 3, 4, 5, 12syl122anc 1196 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  C  =/=  Q )
1413necomd 2504 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  Q  =/=  C )
15 simp1l 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  K  e.  HL )
16 simp21 993 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
17 simp3r 989 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
186, 7, 8, 9cdleme00a 29648 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A
)  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  =/=  P )
1915, 2, 4, 3, 17, 18syl131anc 1200 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  S  =/=  P )
2019necomd 2504 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  P  =/=  S )
216, 7, 8, 9, 10, 11cdleme9a 29690 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( S  e.  A  /\  P  =/=  S ) )  ->  C  e.  A
)
221, 16, 3, 20, 21syl112anc 1191 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  C  e.  A )
237, 9lnnat 28866 . . . 4  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  C  e.  A )  ->  ( Q  =/=  C  <->  -.  ( Q  .\/  C
)  e.  A ) )
2415, 4, 22, 23syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( Q  =/=  C  <->  -.  ( Q  .\/  C
)  e.  A ) )
2514, 24mpbid 203 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  -.  ( Q  .\/  C
)  e.  A )
267, 9hlatjidm 28808 . . . . . . 7  |-  ( ( K  e.  HL  /\  Q  e.  A )  ->  ( Q  .\/  Q
)  =  Q )
2715, 4, 26syl2anc 645 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( Q  .\/  Q
)  =  Q )
2827, 4eqeltrd 2332 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( Q  .\/  Q
)  e.  A )
29 oveq2 5800 . . . . . 6  |-  ( F  =  Q  ->  ( Q  .\/  F )  =  ( Q  .\/  Q
) )
3029eleq1d 2324 . . . . 5  |-  ( F  =  Q  ->  (
( Q  .\/  F
)  e.  A  <->  ( Q  .\/  Q )  e.  A
) )
3128, 30syl5ibrcom 215 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( F  =  Q  ->  ( Q  .\/  F )  e.  A ) )
32 simp22 994 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
33 simp3l 988 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  P  =/=  Q )
34 cdleme11.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
35 cdleme11.f . . . . . . 7  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
366, 7, 8, 9, 10, 34, 11, 34, 35cdleme11g 29704 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  F )  =  ( Q  .\/  C ) )
371, 2, 32, 3, 33, 36syl131anc 1200 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( Q  .\/  F
)  =  ( Q 
.\/  C ) )
3837eleq1d 2324 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( ( Q  .\/  F )  e.  A  <->  ( Q  .\/  C )  e.  A
) )
3931, 38sylibd 207 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( F  =  Q  ->  ( Q  .\/  C )  e.  A ) )
4039necon3bd 2458 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  -> 
( -.  ( Q 
.\/  C )  e.  A  ->  F  =/=  Q ) )
4125, 40mpd 16 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  F  =/=  Q )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   class class class wbr 3997   ` cfv 4673  (class class class)co 5792   lecple 13178   joincjn 14041   meetcmee 14042   Atomscatm 28703   HLchlt 28790   LHypclh 29423
This theorem is referenced by:  cdleme11j  29706  cdleme11k  29707
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-join 14073  df-meet 14074  df-p0 14108  df-p1 14109  df-lat 14115  df-clat 14177  df-oposet 28616  df-ol 28618  df-oml 28619  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-psubsp 28942  df-pmap 28943  df-padd 29235  df-lhyp 29427
  Copyright terms: Public domain W3C validator