Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11j Unicode version

Theorem cdleme11j 30456
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 30459. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l  |-  .<_  =  ( le `  K )
cdleme11.j  |-  .\/  =  ( join `  K )
cdleme11.m  |-  ./\  =  ( meet `  K )
cdleme11.a  |-  A  =  ( Atoms `  K )
cdleme11.h  |-  H  =  ( LHyp `  K
)
cdleme11.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme11.c  |-  C  =  ( ( P  .\/  S )  ./\  W )
cdleme11.d  |-  D  =  ( ( P  .\/  T )  ./\  W )
cdleme11.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
Assertion
Ref Expression
cdleme11j  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  C  .<_  ( Q  .\/  F ) )

Proof of Theorem cdleme11j
StepHypRef Expression
1 simp1l 979 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
2 simp22l 1074 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  A )
3 cdleme11.l . . . . 5  |-  .<_  =  ( le `  K )
4 cdleme11.j . . . . 5  |-  .\/  =  ( join `  K )
5 cdleme11.m . . . . 5  |-  ./\  =  ( meet `  K )
6 cdleme11.a . . . . 5  |-  A  =  ( Atoms `  K )
7 cdleme11.h . . . . 5  |-  H  =  ( LHyp `  K
)
8 cdleme11.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
9 cdleme11.f . . . . 5  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
103, 4, 5, 6, 7, 8, 9cdleme3fa 30425 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  e.  A )
113, 4, 6hlatlej2 29565 . . . 4  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  F  e.  A )  ->  F  .<_  ( Q  .\/  F ) )
121, 2, 10, 11syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  .<_  ( Q  .\/  F ) )
13 simp1 955 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
14 simp21l 1072 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  e.  A )
15 simp22 989 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
16 simp23l 1076 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  A )
17 simp3l 983 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  =/=  Q )
18 cdleme11.c . . . . 5  |-  C  =  ( ( P  .\/  S )  ./\  W )
193, 4, 5, 6, 7, 8, 18, 8, 9cdleme11g 30454 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A )  /\  P  =/=  Q
)  ->  ( Q  .\/  F )  =  ( Q  .\/  C ) )
2013, 14, 15, 16, 17, 19syl131anc 1195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( Q  .\/  F )  =  ( Q  .\/  C ) )
2112, 20breqtrd 4047 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  .<_  ( Q  .\/  C ) )
22 simp21 988 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
23 simp3r 984 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
243, 4, 5, 6cdleme00a 30398 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A
)  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  S  =/=  P )
251, 14, 2, 16, 23, 24syl131anc 1195 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  =/=  P )
2625necomd 2529 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  =/=  S )
273, 4, 5, 6, 7, 18cdleme9a 30440 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( S  e.  A  /\  P  =/=  S ) )  ->  C  e.  A
)
2813, 22, 16, 26, 27syl112anc 1186 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  C  e.  A )
29 simp3 957 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )
303, 4, 5, 6, 7, 8, 18, 8, 9cdleme11h 30455 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  S  e.  A
)  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  F  =/=  Q )
3113, 22, 15, 16, 29, 30syl131anc 1195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  =/=  Q )
323, 4, 6hlatexch1 29584 . . 3  |-  ( ( K  e.  HL  /\  ( F  e.  A  /\  C  e.  A  /\  Q  e.  A
)  /\  F  =/=  Q )  ->  ( F  .<_  ( Q  .\/  C
)  ->  C  .<_  ( Q  .\/  F ) ) )
331, 10, 28, 2, 31, 32syl131anc 1195 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( F  .<_  ( Q  .\/  C
)  ->  C  .<_  ( Q  .\/  F ) ) )
3421, 33mpd 14 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  C  .<_  ( Q  .\/  F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   lecple 13215   joincjn 14078   meetcmee 14079   Atomscatm 29453   HLchlt 29540   LHypclh 30173
This theorem is referenced by:  cdleme11k  30457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177
  Copyright terms: Public domain W3C validator