Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme12 Unicode version

Theorem cdleme12 29727
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, first part of 3rd sentence. 
F and  G represent f(s) and f(t) respectively. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
cdleme12.l  |-  .<_  =  ( le `  K )
cdleme12.j  |-  .\/  =  ( join `  K )
cdleme12.m  |-  ./\  =  ( meet `  K )
cdleme12.a  |-  A  =  ( Atoms `  K )
cdleme12.h  |-  H  =  ( LHyp `  K
)
cdleme12.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme12.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme12.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
Assertion
Ref Expression
cdleme12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( ( S 
.\/  F )  ./\  ( T  .\/  G ) )  =  U )

Proof of Theorem cdleme12
StepHypRef Expression
1 simp1 957 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21l 1074 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  P  e.  A
)
3 simp22 991 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  Q  e.  A
)
4 simp31 993 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
5 cdleme12.l . . . . . 6  |-  .<_  =  ( le `  K )
6 cdleme12.j . . . . . 6  |-  .\/  =  ( join `  K )
7 cdleme12.m . . . . . 6  |-  ./\  =  ( meet `  K )
8 cdleme12.a . . . . . 6  |-  A  =  ( Atoms `  K )
9 cdleme12.h . . . . . 6  |-  H  =  ( LHyp `  K
)
10 cdleme12.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
11 cdleme12.f . . . . . 6  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
125, 6, 7, 8, 9, 10, 11cdleme1 29683 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( S  .\/  F )  =  ( S  .\/  U ) )
131, 2, 3, 4, 12syl13anc 1186 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( S  .\/  F )  =  ( S 
.\/  U ) )
14 simp1l 981 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  K  e.  HL )
15 simp21 990 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
16 simp23 992 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  P  =/=  Q
)
175, 6, 7, 8, 9, 10lhpat2 29501 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
181, 15, 3, 16, 17syl112anc 1188 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  U  e.  A
)
19 simp31l 1080 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  S  e.  A
)
206, 8hlatjcom 28824 . . . . 5  |-  ( ( K  e.  HL  /\  U  e.  A  /\  S  e.  A )  ->  ( U  .\/  S
)  =  ( S 
.\/  U ) )
2114, 18, 19, 20syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( U  .\/  S )  =  ( S 
.\/  U ) )
2213, 21eqtr4d 2319 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( S  .\/  F )  =  ( U 
.\/  S ) )
23 simp32 994 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
24 cdleme12.g . . . . . 6  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
255, 6, 7, 8, 9, 10, 24cdleme1 29683 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( T  e.  A  /\  -.  T  .<_  W ) ) )  ->  ( T  .\/  G )  =  ( T  .\/  U ) )
261, 2, 3, 23, 25syl13anc 1186 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( T  .\/  G )  =  ( T 
.\/  U ) )
27 simp32l 1082 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  T  e.  A
)
286, 8hlatjcom 28824 . . . . 5  |-  ( ( K  e.  HL  /\  U  e.  A  /\  T  e.  A )  ->  ( U  .\/  T
)  =  ( T 
.\/  U ) )
2914, 18, 27, 28syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( U  .\/  T )  =  ( T 
.\/  U ) )
3026, 29eqtr4d 2319 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( T  .\/  G )  =  ( U 
.\/  T ) )
3122, 30oveq12d 5837 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( ( S 
.\/  F )  ./\  ( T  .\/  G ) )  =  ( ( U  .\/  S ) 
./\  ( U  .\/  T ) ) )
32 simp33 995 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) )
335, 6, 7, 82llnma2 29245 . . 3  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
)  /\  ( S  =/=  T  /\  -.  U  .<_  ( S  .\/  T
) ) )  -> 
( ( U  .\/  S )  ./\  ( U  .\/  T ) )  =  U )
3414, 19, 27, 18, 32, 33syl131anc 1197 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( ( U 
.\/  S )  ./\  ( U  .\/  T ) )  =  U )
3531, 34eqtrd 2316 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A  /\  P  =/=  Q )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )  ->  ( ( S 
.\/  F )  ./\  ( T  .\/  G ) )  =  U )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2447   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   lecple 13209   joincjn 14072   meetcmee 14073   Atomscatm 28720   HLchlt 28807   LHypclh 29440
This theorem is referenced by:  cdleme13  29728  cdleme16b  29735
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-psubsp 28959  df-pmap 28960  df-padd 29252  df-lhyp 29444
  Copyright terms: Public domain W3C validator