Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme16d Unicode version

Theorem cdleme16d 29271
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 3rd part of 3rd sentence.  F and  G represent f(s) and f(t) respectively. We show, in their notation, (s  \/ t)  /\ (f(s)  \/ f(t)) is an atom. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme12.l  |-  .<_  =  ( le `  K )
cdleme12.j  |-  .\/  =  ( join `  K )
cdleme12.m  |-  ./\  =  ( meet `  K )
cdleme12.a  |-  A  =  ( Atoms `  K )
cdleme12.h  |-  H  =  ( LHyp `  K
)
cdleme12.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme12.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme12.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
Assertion
Ref Expression
cdleme16d  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  T )  ./\  ( F  .\/  G ) )  e.  A )

Proof of Theorem cdleme16d
StepHypRef Expression
1 cdleme12.l . . . 4  |-  .<_  =  ( le `  K )
2 cdleme12.j . . . 4  |-  .\/  =  ( join `  K )
3 cdleme12.m . . . 4  |-  ./\  =  ( meet `  K )
4 cdleme12.a . . . 4  |-  A  =  ( Atoms `  K )
5 cdleme12.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdleme12.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
7 cdleme12.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
8 cdleme12.g . . . 4  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
91, 2, 3, 4, 5, 6, 7, 8cdleme16c 29270 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  T )  .\/  ( F  .\/  G ) )  =  ( ( S  .\/  T ) 
.\/  U ) )
10 simp23r 1082 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  S  =/=  T )
11 simp33 998 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  -.  U  .<_  ( S  .\/  T
) )
12 simp11l 1071 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  K  e.  HL )
13 simp21l 1077 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  S  e.  A )
14 simp22l 1079 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  T  e.  A )
15 simp11r 1072 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  W  e.  H )
16 simp12l 1073 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  P  e.  A )
17 simp12r 1074 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  -.  P  .<_  W )
18 simp13l 1075 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  Q  e.  A )
19 simp23l 1081 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  P  =/=  Q )
201, 2, 3, 4, 5, 6lhpat2 29035 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  P  =/=  Q ) )  ->  U  e.  A
)
2112, 15, 16, 17, 18, 19, 20syl222anc 1203 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  U  e.  A )
22 eqid 2253 . . . . . 6  |-  ( LPlanes `  K )  =  (
LPlanes `  K )
231, 2, 4, 22islpln2a 28538 . . . . 5  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  ->  (
( ( S  .\/  T )  .\/  U )  e.  ( LPlanes `  K
)  <->  ( S  =/= 
T  /\  -.  U  .<_  ( S  .\/  T
) ) ) )
2412, 13, 14, 21, 23syl13anc 1189 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( (
( S  .\/  T
)  .\/  U )  e.  ( LPlanes `  K )  <->  ( S  =/=  T  /\  -.  U  .<_  ( S 
.\/  T ) ) ) )
2510, 11, 24mpbir2and 893 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  T )  .\/  U )  e.  ( LPlanes `  K ) )
269, 25eqeltrd 2327 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  T )  .\/  ( F  .\/  G ) )  e.  ( LPlanes `  K ) )
27 eqid 2253 . . . . . 6  |-  ( LLines `  K )  =  (
LLines `  K )
282, 4, 27islln2a 28507 . . . . 5  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( ( S  .\/  T )  e.  ( LLines `  K )  <->  S  =/=  T ) )
2912, 13, 14, 28syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  T )  e.  ( LLines `  K )  <->  S  =/=  T ) )
3010, 29mpbird 225 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( S  .\/  T )  e.  (
LLines `  K ) )
311, 2, 3, 4, 5, 6, 7, 8cdleme16b 29269 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  F  =/=  G )
32 simp11 990 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
33 simp12 991 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
34 simp13 992 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
35 simp21 993 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
36 simp31 996 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
371, 2, 3, 4, 5, 6, 7cdleme3fa 29226 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  e.  A )
3832, 33, 34, 35, 19, 36, 37syl132anc 1205 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  F  e.  A )
39 simp22 994 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
40 simp32 997 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  -.  T  .<_  ( P  .\/  Q
) )
411, 2, 3, 4, 5, 6, 8cdleme3fa 29226 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  T  .<_  ( P 
.\/  Q ) ) )  ->  G  e.  A )
4232, 33, 34, 39, 19, 40, 41syl132anc 1205 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  G  e.  A )
432, 4, 27islln2a 28507 . . . . 5  |-  ( ( K  e.  HL  /\  F  e.  A  /\  G  e.  A )  ->  ( ( F  .\/  G )  e.  ( LLines `  K )  <->  F  =/=  G ) )
4412, 38, 42, 43syl3anc 1187 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( F  .\/  G )  e.  ( LLines `  K )  <->  F  =/=  G ) )
4531, 44mpbird 225 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( F  .\/  G )  e.  (
LLines `  K ) )
462, 3, 4, 27, 222llnmj 28550 . . 3  |-  ( ( K  e.  HL  /\  ( S  .\/  T )  e.  ( LLines `  K
)  /\  ( F  .\/  G )  e.  (
LLines `  K ) )  ->  ( ( ( S  .\/  T ) 
./\  ( F  .\/  G ) )  e.  A  <->  ( ( S  .\/  T
)  .\/  ( F  .\/  G ) )  e.  ( LPlanes `  K )
) )
4712, 30, 45, 46syl3anc 1187 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( (
( S  .\/  T
)  ./\  ( F  .\/  G ) )  e.  A  <->  ( ( S 
.\/  T )  .\/  ( F  .\/  G ) )  e.  ( LPlanes `  K ) ) )
4826, 47mpbird 225 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  ( P  =/= 
Q  /\  S  =/=  T ) )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q )  /\  -.  U  .<_  ( S 
.\/  T ) ) )  ->  ( ( S  .\/  T )  ./\  ( F  .\/  G ) )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   lecple 13089   joincjn 13922   meetcmee 13923   Atomscatm 28254   HLchlt 28341   LLinesclln 28481   LPlanesclpl 28482   LHypclh 28974
This theorem is referenced by:  cdleme16e  29272  cdleme16f  29273
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28167  df-ol 28169  df-oml 28170  df-covers 28257  df-ats 28258  df-atl 28289  df-cvlat 28313  df-hlat 28342  df-llines 28488  df-lplanes 28489  df-lines 28491  df-psubsp 28493  df-pmap 28494  df-padd 28786  df-lhyp 28978
  Copyright terms: Public domain W3C validator