Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme17c Unicode version

Theorem cdleme17c 29278
Description: Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph.  C represents s1. We show, in their notation, (p  \/ q)  /\ (q  \/ s1)=q. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme17.l  |-  .<_  =  ( le `  K )
cdleme17.j  |-  .\/  =  ( join `  K )
cdleme17.m  |-  ./\  =  ( meet `  K )
cdleme17.a  |-  A  =  ( Atoms `  K )
cdleme17.h  |-  H  =  ( LHyp `  K
)
cdleme17.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme17.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme17.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme17.c  |-  C  =  ( ( P  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme17c  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( Q  .\/  C ) )  =  Q )

Proof of Theorem cdleme17c
StepHypRef Expression
1 simp1l 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
2 simp2l 986 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  e.  A )
3 simp31 996 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  A )
4 cdleme17.j . . . . 5  |-  .\/  =  ( join `  K )
5 cdleme17.a . . . . 5  |-  A  =  ( Atoms `  K )
64, 5hlatjcom 28358 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
71, 2, 3, 6syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P ) )
87oveq1d 5725 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( Q  .\/  C ) )  =  ( ( Q  .\/  P ) 
./\  ( Q  .\/  C ) ) )
9 simp1r 985 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  H )
10 simp2r 987 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  P  .<_  W )
11 simp32 997 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  A )
12 hllat 28354 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
131, 12syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  Lat )
14 eqid 2253 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1514, 5atbase 28280 . . . . . 6  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
1611, 15syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  ( Base `  K )
)
1714, 5atbase 28280 . . . . . 6  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
182, 17syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  e.  ( Base `  K )
)
1914, 5atbase 28280 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
203, 19syl 17 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  Q  e.  ( Base `  K )
)
21 simp33 998 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
22 cdleme17.l . . . . . . 7  |-  .<_  =  ( le `  K )
2314, 22, 4latnlej1l 14019 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  S  =/=  P )
2423necomd 2495 . . . . 5  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  P  =/=  S )
2513, 16, 18, 20, 21, 24syl131anc 1200 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  =/=  S )
26 cdleme17.m . . . . 5  |-  ./\  =  ( meet `  K )
27 cdleme17.h . . . . 5  |-  H  =  ( LHyp `  K
)
28 cdleme17.c . . . . 5  |-  C  =  ( ( P  .\/  S )  ./\  W )
2922, 4, 26, 5, 27, 28cdleme9a 29241 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( S  e.  A  /\  P  =/=  S ) )  ->  C  e.  A
)
301, 9, 2, 10, 11, 25, 29syl222anc 1203 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  C  e.  A )
31 cdleme17.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
32 cdleme17.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
33 cdleme17.g . . . 4  |-  G  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( P  .\/  S )  ./\  W )
) )
3422, 4, 26, 5, 27, 31, 32, 33, 28cdleme17b 29277 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  C  .<_  ( P  .\/  Q
) )
3522, 4, 26, 52llnma1 28777 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  C  e.  A
)  /\  -.  C  .<_  ( P  .\/  Q
) )  ->  (
( Q  .\/  P
)  ./\  ( Q  .\/  C ) )  =  Q )
361, 2, 3, 30, 34, 35syl131anc 1200 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( Q  .\/  P )  ./\  ( Q  .\/  C ) )  =  Q )
378, 36eqtrd 2285 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  S  e.  A  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( P  .\/  Q )  ./\  ( Q  .\/  C ) )  =  Q )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Latclat 13995   Atomscatm 28254   HLchlt 28341   LHypclh 28974
This theorem is referenced by:  cdleme17d1  29279
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28167  df-ol 28169  df-oml 28170  df-covers 28257  df-ats 28258  df-atl 28289  df-cvlat 28313  df-hlat 28342  df-psubsp 28493  df-pmap 28494  df-padd 28786  df-lhyp 28978
  Copyright terms: Public domain W3C validator