Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme19a Unicode version

Theorem cdleme19a 30563
Description: Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, 1st line.  D represents s2. In their notation, we prove that if r  <_ s  \/ t, then s2=(s  \/ t)  /\ w. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme19a  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  D  =  ( ( S 
.\/  T )  ./\  W ) )

Proof of Theorem cdleme19a
StepHypRef Expression
1 cdleme19.d . 2  |-  D  =  ( ( R  .\/  S )  ./\  W )
2 eqid 2366 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
3 cdleme19.l . . . 4  |-  .<_  =  ( le `  K )
4 hllat 29624 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
543ad2ant1 977 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  K  e.  Lat )
6 simp1 956 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  K  e.  HL )
7 simp21 989 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  R  e.  A )
8 simp22 990 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  S  e.  A )
9 cdleme19.j . . . . . 6  |-  .\/  =  ( join `  K )
10 cdleme19.a . . . . . 6  |-  A  =  ( Atoms `  K )
112, 9, 10hlatjcl 29627 . . . . 5  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
126, 7, 8, 11syl3anc 1183 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( R  .\/  S )  e.  ( Base `  K
) )
13 simp23 991 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  T  e.  A )
142, 9, 10hlatjcl 29627 . . . . 5  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
156, 8, 13, 14syl3anc 1183 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( S  .\/  T )  e.  ( Base `  K
) )
16 simp33 994 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  R  .<_  ( S  .\/  T
) )
173, 9, 10hlatlej1 29635 . . . . . 6  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  S  .<_  ( S  .\/  T ) )
186, 8, 13, 17syl3anc 1183 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  S  .<_  ( S  .\/  T
) )
192, 10atbase 29550 . . . . . . 7  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
207, 19syl 15 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  R  e.  ( Base `  K
) )
212, 10atbase 29550 . . . . . . 7  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
228, 21syl 15 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  S  e.  ( Base `  K
) )
232, 3, 9latjle12 14378 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  e.  ( Base `  K )  /\  S  e.  ( Base `  K )  /\  ( S  .\/  T )  e.  ( Base `  K
) ) )  -> 
( ( R  .<_  ( S  .\/  T )  /\  S  .<_  ( S 
.\/  T ) )  <-> 
( R  .\/  S
)  .<_  ( S  .\/  T ) ) )
245, 20, 22, 15, 23syl13anc 1185 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  (
( R  .<_  ( S 
.\/  T )  /\  S  .<_  ( S  .\/  T ) )  <->  ( R  .\/  S )  .<_  ( S 
.\/  T ) ) )
2516, 18, 24mpbi2and 887 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( R  .\/  S )  .<_  ( S  .\/  T ) )
263, 9, 10hlatlej2 29636 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  S  .<_  ( R  .\/  S ) )
276, 7, 8, 26syl3anc 1183 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  S  .<_  ( R  .\/  S
) )
28 hlcvl 29620 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  CvLat )
29283ad2ant1 977 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  K  e.  CvLat )
30 simp31 992 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  R  .<_  ( P  .\/  Q
) )
31 simp32 993 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
32 nbrne2 4143 . . . . . . . . 9  |-  ( ( R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  R  =/=  S )
3330, 31, 32syl2anc 642 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  R  =/=  S )
343, 9, 10cvlatexch1 29597 . . . . . . . 8  |-  ( ( K  e.  CvLat  /\  ( R  e.  A  /\  T  e.  A  /\  S  e.  A )  /\  R  =/=  S
)  ->  ( R  .<_  ( S  .\/  T
)  ->  T  .<_  ( S  .\/  R ) ) )
3529, 7, 13, 8, 33, 34syl131anc 1196 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( R  .<_  ( S  .\/  T )  ->  T  .<_  ( S  .\/  R ) ) )
3616, 35mpd 14 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  T  .<_  ( S  .\/  R
) )
379, 10hlatjcom 29628 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  =  ( S 
.\/  R ) )
386, 7, 8, 37syl3anc 1183 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( R  .\/  S )  =  ( S  .\/  R
) )
3936, 38breqtrrd 4151 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  T  .<_  ( R  .\/  S
) )
402, 10atbase 29550 . . . . . . 7  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
4113, 40syl 15 . . . . . 6  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  T  e.  ( Base `  K
) )
422, 3, 9latjle12 14378 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  T  e.  ( Base `  K )  /\  ( R  .\/  S )  e.  ( Base `  K
) ) )  -> 
( ( S  .<_  ( R  .\/  S )  /\  T  .<_  ( R 
.\/  S ) )  <-> 
( S  .\/  T
)  .<_  ( R  .\/  S ) ) )
435, 22, 41, 12, 42syl13anc 1185 . . . . 5  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  (
( S  .<_  ( R 
.\/  S )  /\  T  .<_  ( R  .\/  S ) )  <->  ( S  .\/  T )  .<_  ( R 
.\/  S ) ) )
4427, 39, 43mpbi2and 887 . . . 4  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( S  .\/  T )  .<_  ( R  .\/  S ) )
452, 3, 5, 12, 15, 25, 44latasymd 14373 . . 3  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  ( R  .\/  S )  =  ( S  .\/  T
) )
4645oveq1d 5996 . 2  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  (
( R  .\/  S
)  ./\  W )  =  ( ( S 
.\/  T )  ./\  W ) )
471, 46syl5eq 2410 1  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A  /\  T  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
)  /\  R  .<_  ( S  .\/  T ) ) )  ->  D  =  ( ( S 
.\/  T )  ./\  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    =/= wne 2529   class class class wbr 4125   ` cfv 5358  (class class class)co 5981   Basecbs 13356   lecple 13423   joincjn 14288   meetcmee 14289   Latclat 14361   Atomscatm 29524   CvLatclc 29526   HLchlt 29611   LHypclh 30244
This theorem is referenced by:  cdleme19b  30564
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-undef 6440  df-riota 6446  df-poset 14290  df-plt 14302  df-lub 14318  df-join 14320  df-lat 14362  df-covers 29527  df-ats 29528  df-atl 29559  df-cvlat 29583  df-hlat 29612
  Copyright terms: Public domain W3C validator