Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme19c Unicode version

Theorem cdleme19c 30941
Description: Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, 1st line.  D,  F represent s2, f(s). We prove f(s)  =/= s2. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme19c  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  =/=  D )

Proof of Theorem cdleme19c
StepHypRef Expression
1 cdleme19.d . . . 4  |-  D  =  ( ( R  .\/  S )  ./\  W )
2 simp1l 981 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  HL )
3 hllat 30000 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  K  e.  Lat )
5 simp31 993 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  R  e.  A )
6 simp23l 1078 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  A )
7 eqid 2435 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
8 cdleme19.j . . . . . . 7  |-  .\/  =  ( join `  K )
9 cdleme19.a . . . . . . 7  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 30003 . . . . . 6  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
112, 5, 6, 10syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  S )  e.  (
Base `  K )
)
12 simp1r 982 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  H )
13 cdleme19.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
147, 13lhpbase 30634 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1512, 14syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  W  e.  ( Base `  K )
)
16 cdleme19.l . . . . . 6  |-  .<_  =  ( le `  K )
17 cdleme19.m . . . . . 6  |-  ./\  =  ( meet `  K )
187, 16, 17latmle2 14494 . . . . 5  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( R  .\/  S )  ./\  W )  .<_  W )
194, 11, 15, 18syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( R  .\/  S )  ./\  W )  .<_  W )
201, 19syl5eqbr 4237 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  D  .<_  W )
21 simp32 994 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  =/=  Q )
22 simp33 995 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
2321, 22jca 519 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( P  =/=  Q  /\  -.  S  .<_  ( P  .\/  Q
) ) )
24 cdleme19.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
25 cdleme19.f . . . . 5  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
2616, 8, 17, 9, 13, 24, 25cdleme3 30873 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  F  .<_  W )
2723, 26syld3an3 1229 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  F  .<_  W )
28 nbrne2 4222 . . 3  |-  ( ( D  .<_  W  /\  -.  F  .<_  W )  ->  D  =/=  F
)
2920, 27, 28syl2anc 643 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  D  =/=  F )
3029necomd 2681 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  e.  A  /\  P  =/=  Q  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  F  =/=  D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5445  (class class class)co 6072   Basecbs 13457   lecple 13524   joincjn 14389   meetcmee 14390   Latclat 14462   Atomscatm 29900   HLchlt 29987   LHypclh 30620
This theorem is referenced by:  cdleme19d  30942  cdleme20l1  30956
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-undef 6534  df-riota 6540  df-poset 14391  df-plt 14403  df-lub 14419  df-glb 14420  df-join 14421  df-meet 14422  df-p0 14456  df-p1 14457  df-lat 14463  df-clat 14525  df-oposet 29813  df-ol 29815  df-oml 29816  df-covers 29903  df-ats 29904  df-atl 29935  df-cvlat 29959  df-hlat 29988  df-lines 30137  df-psubsp 30139  df-pmap 30140  df-padd 30432  df-lhyp 30624
  Copyright terms: Public domain W3C validator