Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme19e Unicode version

Theorem cdleme19e 29626
Description: Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, line 2.  D,  F,  Y,  G represent s2, f(s), t2, f(t). We prove f(s)  \/ s2=f(t)  \/ t2. (Contributed by NM, 14-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme19e  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( F  .\/  D )  =  ( G  .\/  Y
) )

Proof of Theorem cdleme19e
StepHypRef Expression
1 simp11l 1071 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  K  e.  HL )
2 hllat 28683 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 17 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  K  e.  Lat )
4 simp11r 1072 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  W  e.  H )
5 simp12l 1073 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  P  e.  A )
6 simp13l 1075 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  Q  e.  A )
7 simp21l 1077 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  S  e.  A )
8 cdleme19.l . . . . 5  |-  .<_  =  ( le `  K )
9 cdleme19.j . . . . 5  |-  .\/  =  ( join `  K )
10 cdleme19.m . . . . 5  |-  ./\  =  ( meet `  K )
11 cdleme19.a . . . . 5  |-  A  =  ( Atoms `  K )
12 cdleme19.h . . . . 5  |-  H  =  ( LHyp `  K
)
13 cdleme19.u . . . . 5  |-  U  =  ( ( P  .\/  Q )  ./\  W )
14 cdleme19.f . . . . 5  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
15 eqid 2256 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
168, 9, 10, 11, 12, 13, 14, 15cdleme1b 29545 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  S  e.  A ) )  ->  F  e.  ( Base `  K ) )
171, 4, 5, 6, 7, 16syl23anc 1194 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  F  e.  ( Base `  K
) )
18 simp22l 1079 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  T  e.  A )
19 cdleme19.g . . . . 5  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
208, 9, 10, 11, 12, 13, 19, 15cdleme1b 29545 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  T  e.  A ) )  ->  G  e.  ( Base `  K ) )
211, 4, 5, 6, 18, 20syl23anc 1194 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  G  e.  ( Base `  K
) )
2215, 9latjcom 14092 . . 3  |-  ( ( K  e.  Lat  /\  F  e.  ( Base `  K )  /\  G  e.  ( Base `  K
) )  ->  ( F  .\/  G )  =  ( G  .\/  F
) )
233, 17, 21, 22syl3anc 1187 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( F  .\/  G )  =  ( G  .\/  F
) )
24 cdleme19.d . . 3  |-  D  =  ( ( R  .\/  S )  ./\  W )
25 cdleme19.y . . 3  |-  Y  =  ( ( R  .\/  T )  ./\  W )
268, 9, 10, 11, 12, 13, 14, 19, 24, 25cdleme19d 29625 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( F  .\/  D )  =  ( F  .\/  G
) )
27 simp11 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
28 simp12 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
29 simp13 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
30 simp22 994 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( T  e.  A  /\  -.  T  .<_  W ) )
31 simp21 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
32 simp23 995 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  R  e.  A )
33 simp31l 1083 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  P  =/=  Q )
34 simp31r 1084 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  S  =/=  T )
3534necomd 2502 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  T  =/=  S )
3633, 35jca 520 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( P  =/=  Q  /\  T  =/=  S ) )
37 simp32r 1086 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  -.  T  .<_  ( P  .\/  Q ) )
38 simp32l 1085 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
3937, 38jca 520 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( -.  T  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )
40 simp33l 1087 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  R  .<_  ( P  .\/  Q
) )
41 simp33r 1088 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  R  .<_  ( S  .\/  T
) )
429, 11hlatjcom 28687 . . . . . 6  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  =  ( T 
.\/  S ) )
431, 7, 18, 42syl3anc 1187 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( S  .\/  T )  =  ( T  .\/  S
) )
4441, 43breqtrd 3987 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  R  .<_  ( T  .\/  S
) )
4540, 44jca 520 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( T  .\/  S ) ) )
468, 9, 10, 11, 12, 13, 19, 14, 25, 24cdleme19d 29625 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( T  e.  A  /\  -.  T  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  T  =/=  S )  /\  ( -.  T  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( T 
.\/  S ) ) ) )  ->  ( G  .\/  Y )  =  ( G  .\/  F
) )
4727, 28, 29, 30, 31, 32, 36, 39, 45, 46syl333anc 1219 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( G  .\/  Y )  =  ( G  .\/  F
) )
4823, 26, 473eqtr4d 2298 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( F  .\/  D )  =  ( G  .\/  Y
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2419   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   Basecbs 13075   lecple 13142   joincjn 14005   meetcmee 14006   Latclat 14078   Atomscatm 28583   HLchlt 28670   LHypclh 29303
This theorem is referenced by:  cdleme19f  29627
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-llines 28817  df-lplanes 28818  df-lvols 28819  df-lines 28820  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307
  Copyright terms: Public domain W3C validator