Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme19f Unicode version

Theorem cdleme19f 29298
Description: Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, line 3.  D,  F,  N,  Y,  G,  O represent s2, f(s), fs(r), t2, f(t), ft(r). We prove that if r  <_ s  \/ t, then ft(r) = ft(r). (Contributed by NM, 14-Nov-2012.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme19.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
cdleme19.o  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) )
Assertion
Ref Expression
cdleme19f  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  N  =  O )

Proof of Theorem cdleme19f
StepHypRef Expression
1 cdleme19.l . . . 4  |-  .<_  =  ( le `  K )
2 cdleme19.j . . . 4  |-  .\/  =  ( join `  K )
3 cdleme19.m . . . 4  |-  ./\  =  ( meet `  K )
4 cdleme19.a . . . 4  |-  A  =  ( Atoms `  K )
5 cdleme19.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdleme19.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
7 cdleme19.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
8 cdleme19.g . . . 4  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
9 cdleme19.d . . . 4  |-  D  =  ( ( R  .\/  S )  ./\  W )
10 cdleme19.y . . . 4  |-  Y  =  ( ( R  .\/  T )  ./\  W )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme19e 29297 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  ( F  .\/  D )  =  ( G  .\/  Y
) )
1211oveq2d 5726 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  (
( P  .\/  Q
)  ./\  ( F  .\/  D ) )  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) ) )
13 cdleme19.n . 2  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  D ) )
14 cdleme19.o . 2  |-  O  =  ( ( P  .\/  Q )  ./\  ( G  .\/  Y ) )
1512, 13, 143eqtr4g 2310 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W )  /\  R  e.  A
)  /\  ( ( P  =/=  Q  /\  S  =/=  T )  /\  ( -.  S  .<_  ( P 
.\/  Q )  /\  -.  T  .<_  ( P 
.\/  Q ) )  /\  ( R  .<_  ( P  .\/  Q )  /\  R  .<_  ( S 
.\/  T ) ) ) )  ->  N  =  O )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   lecple 13089   joincjn 13922   meetcmee 13923   Atomscatm 28254   HLchlt 28341   LHypclh 28974
This theorem is referenced by:  cdleme20  29314
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28167  df-ol 28169  df-oml 28170  df-covers 28257  df-ats 28258  df-atl 28289  df-cvlat 28313  df-hlat 28342  df-llines 28488  df-lplanes 28489  df-lvols 28490  df-lines 28491  df-psubsp 28493  df-pmap 28494  df-padd 28786  df-lhyp 28978
  Copyright terms: Public domain W3C validator