Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme1b Unicode version

Theorem cdleme1b 29665
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma showing  F is a lattice element.  F represents their f(r). (Contributed by NM, 6-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
cdleme1.b  |-  B  =  ( Base `  K
)
Assertion
Ref Expression
cdleme1b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  F  e.  B )

Proof of Theorem cdleme1b
StepHypRef Expression
1 cdleme1.f . 2  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
2 hllat 28803 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
32ad2antrr 709 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  K  e.  Lat )
4 simpr3 968 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  R  e.  A )
5 cdleme1.b . . . . . 6  |-  B  =  ( Base `  K
)
6 cdleme1.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 28729 . . . . 5  |-  ( R  e.  A  ->  R  e.  B )
84, 7syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  R  e.  B )
9 cdleme1.l . . . . . 6  |-  .<_  =  ( le `  K )
10 cdleme1.j . . . . . 6  |-  .\/  =  ( join `  K )
11 cdleme1.m . . . . . 6  |-  ./\  =  ( meet `  K )
12 cdleme1.h . . . . . 6  |-  H  =  ( LHyp `  K
)
13 cdleme1.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
149, 10, 11, 6, 12, 13, 5cdleme0aa 29649 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  P  e.  A  /\  Q  e.  A
)  ->  U  e.  B )
15143adant3r3 1167 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  U  e.  B )
165, 10latjcl 14119 . . . 4  |-  ( ( K  e.  Lat  /\  R  e.  B  /\  U  e.  B )  ->  ( R  .\/  U
)  e.  B )
173, 8, 15, 16syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( R  .\/  U
)  e.  B )
18 simpr2 967 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  Q  e.  A )
195, 6atbase 28729 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  B )
2018, 19syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  Q  e.  B )
21 simpr1 966 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  P  e.  A )
225, 6atbase 28729 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  B )
2321, 22syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  P  e.  B )
245, 10latjcl 14119 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  R  e.  B )  ->  ( P  .\/  R
)  e.  B )
253, 23, 8, 24syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( P  .\/  R
)  e.  B )
265, 12lhpbase 29437 . . . . . 6  |-  ( W  e.  H  ->  W  e.  B )
2726ad2antlr 710 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  W  e.  B )
285, 11latmcl 14120 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  R )  e.  B  /\  W  e.  B )  ->  (
( P  .\/  R
)  ./\  W )  e.  B )
293, 25, 27, 28syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( ( P  .\/  R )  ./\  W )  e.  B )
305, 10latjcl 14119 . . . 4  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  ( ( P  .\/  R )  ./\  W )  e.  B )  ->  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  B
)
313, 20, 29, 30syl3anc 1187 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( Q  .\/  (
( P  .\/  R
)  ./\  W )
)  e.  B )
325, 11latmcl 14120 . . 3  |-  ( ( K  e.  Lat  /\  ( R  .\/  U )  e.  B  /\  ( Q  .\/  ( ( P 
.\/  R )  ./\  W ) )  e.  B
)  ->  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R ) 
./\  W ) ) )  e.  B )
333, 17, 31, 32syl3anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  -> 
( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )  e.  B
)
341, 33syl5eqel 2342 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A ) )  ->  F  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   ` cfv 4673  (class class class)co 5792   Basecbs 13111   lecple 13178   joincjn 14041   meetcmee 14042   Latclat 14114   Atomscatm 28703   HLchlt 28790   LHypclh 29423
This theorem is referenced by:  cdleme3c  29669  cdleme4a  29678  cdleme5  29679  cdleme7e  29686  cdleme11  29709  cdleme15  29717  cdleme22gb  29733  cdleme19b  29743  cdleme19e  29746  cdleme20d  29751  cdleme20j  29757  cdleme20k  29758  cdleme20l2  29760  cdleme20l  29761  cdleme20m  29762  cdleme22e  29783  cdleme22eALTN  29784  cdleme22f  29785  cdleme27cl  29805  cdlemefr27cl  29842  cdleme35fnpq  29888
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-sep 4115  ax-nul 4123  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-rab 2527  df-v 2765  df-sbc 2967  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fv 4689  df-ov 5795  df-lat 14115  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-lhyp 29427
  Copyright terms: Public domain W3C validator