Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme2 Unicode version

Theorem cdleme2 31039
Description: Part of proof of Lemma E in [Crawley] p. 113. .  F represents f(r).  W is the fiducial co-atom (hyperplane) w. Here we show that (r  \/ f(r))  /\ w = u in their notation (4th line from bottom on p. 113). (Contributed by NM, 5-Jun-2012.)
Hypotheses
Ref Expression
cdleme1.l  |-  .<_  =  ( le `  K )
cdleme1.j  |-  .\/  =  ( join `  K )
cdleme1.m  |-  ./\  =  ( meet `  K )
cdleme1.a  |-  A  =  ( Atoms `  K )
cdleme1.h  |-  H  =  ( LHyp `  K
)
cdleme1.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme1.f  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R  .\/  F )  ./\  W )  =  U )

Proof of Theorem cdleme2
StepHypRef Expression
1 cdleme1.l . . . 4  |-  .<_  =  ( le `  K )
2 cdleme1.j . . . 4  |-  .\/  =  ( join `  K )
3 cdleme1.m . . . 4  |-  ./\  =  ( meet `  K )
4 cdleme1.a . . . 4  |-  A  =  ( Atoms `  K )
5 cdleme1.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdleme1.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
7 cdleme1.f . . . 4  |-  F  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
81, 2, 3, 4, 5, 6, 7cdleme1 31038 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  .\/  F )  =  ( R  .\/  U ) )
98oveq1d 5889 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R  .\/  F )  ./\  W )  =  ( ( R  .\/  U ) 
./\  W ) )
10 simpll 730 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  HL )
11 simpr3l 1016 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  R  e.  A )
12 hllat 30175 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
1312ad2antrr 706 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  Lat )
14 simpr1 961 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  A )
15 eqid 2296 . . . . . . . 8  |-  ( Base `  K )  =  (
Base `  K )
1615, 4atbase 30101 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1714, 16syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  P  e.  ( Base `  K )
)
18 simpr2 962 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  A )
1915, 4atbase 30101 . . . . . . 7  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2018, 19syl 15 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  Q  e.  ( Base `  K )
)
2115, 2latjcl 14172 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
2213, 17, 20, 21syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
2315, 5lhpbase 30809 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2423ad2antlr 707 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  W  e.  ( Base `  K )
)
2515, 3latmcl 14173 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K ) )
2613, 22, 24, 25syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P  .\/  Q )  ./\  W )  e.  ( Base `  K ) )
276, 26syl5eqel 2380 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  e.  ( Base `  K )
)
2815, 1, 3latmle2 14199 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
2913, 22, 24, 28syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( P  .\/  Q )  ./\  W )  .<_  W )
306, 29syl5eqbr 4072 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  U  .<_  W )
3115, 1, 2, 3, 4atmod4i2 30678 . . 3  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  U  e.  ( Base `  K )  /\  W  e.  ( Base `  K ) )  /\  U  .<_  W )  -> 
( ( R  ./\  W )  .\/  U )  =  ( ( R 
.\/  U )  ./\  W ) )
3210, 11, 27, 24, 30, 31syl131anc 1195 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R  ./\  W )  .\/  U )  =  ( ( R  .\/  U ) 
./\  W ) )
33 eqid 2296 . . . . . 6  |-  ( 0.
`  K )  =  ( 0. `  K
)
341, 3, 33, 4, 5lhpmat 30841 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  ./\  W
)  =  ( 0.
`  K ) )
35343ad2antr3 1122 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( R  ./\ 
W )  =  ( 0. `  K ) )
3635oveq1d 5889 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R  ./\  W )  .\/  U )  =  ( ( 0. `  K ) 
.\/  U ) )
37 hlol 30173 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OL )
3837ad2antrr 706 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  K  e.  OL )
3915, 2, 33olj02 30038 . . . 4  |-  ( ( K  e.  OL  /\  U  e.  ( Base `  K ) )  -> 
( ( 0. `  K )  .\/  U
)  =  U )
4038, 27, 39syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( 0. `  K )  .\/  U )  =  U )
4136, 40eqtrd 2328 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R  ./\  W )  .\/  U )  =  U )
429, 32, 413eqtr2d 2334 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  ( R  e.  A  /\  -.  R  .<_  W ) ) )  ->  ( ( R  .\/  F )  ./\  W )  =  U )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   meetcmee 14095   0.cp0 14159   Latclat 14167   OLcol 29986   Atomscatm 30075   HLchlt 30162   LHypclh 30795
This theorem is referenced by:  cdleme3  31048  cdleme37m  31273  cdleme39a  31276  cdleme50trn1  31360
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799
  Copyright terms: Public domain W3C validator