Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20aN Unicode version

Theorem cdleme20aN 29628
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114.  D,  F,  Y,  G represent s2, f(s), t2, f(t). (Contributed by NM, 14-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme20.v  |-  V  =  ( ( S  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme20aN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( V  .\/  D
)  =  ( ( ( S  .\/  R
)  .\/  T )  ./\  W ) )

Proof of Theorem cdleme20aN
StepHypRef Expression
1 cdleme20.v . . 3  |-  V  =  ( ( S  .\/  T )  ./\  W )
21oveq1i 5767 . 2  |-  ( V 
.\/  D )  =  ( ( ( S 
.\/  T )  ./\  W )  .\/  D )
3 simp1l 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  HL )
4 simp1r 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  H )
5 simp22 994 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  S  e.  A )
6 simp23 995 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  W )
7 simp21 993 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  A )
8 simp33 998 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q ) )
9 simp32 997 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  ( P 
.\/  Q ) )
10 cdleme19.l . . . . . 6  |-  .<_  =  ( le `  K )
11 cdleme19.j . . . . . 6  |-  .\/  =  ( join `  K )
12 cdleme19.m . . . . . 6  |-  ./\  =  ( meet `  K )
13 cdleme19.a . . . . . 6  |-  A  =  ( Atoms `  K )
14 cdleme19.h . . . . . 6  |-  H  =  ( LHyp `  K
)
15 cdleme19.d . . . . . 6  |-  D  =  ( ( R  .\/  S )  ./\  W )
1610, 11, 12, 13, 14, 15cdlemeda 29617 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( R  e.  A  /\  R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  D  e.  A )
173, 4, 5, 6, 7, 8, 9, 16syl223anc 1213 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  D  e.  A )
18 simp31 996 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  T  e.  A )
19 eqid 2256 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
2019, 11, 13hlatjcl 28686 . . . . 5  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
213, 5, 18, 20syl3anc 1187 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( S  .\/  T
)  e.  ( Base `  K ) )
2219, 14lhpbase 29317 . . . . 5  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
234, 22syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  ( Base `  K ) )
24 hllat 28683 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
253, 24syl 17 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  Lat )
2619, 11, 13hlatjcl 28686 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
273, 7, 5, 26syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( R  .\/  S
)  e.  ( Base `  K ) )
2819, 10, 12latmle2 14110 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( R  .\/  S )  ./\  W )  .<_  W )
2925, 27, 23, 28syl3anc 1187 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( R  .\/  S )  ./\  W )  .<_  W )
3015, 29syl5eqbr 3996 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  D  .<_  W )
3119, 10, 11, 12, 13atmod4i1 29185 . . . 4  |-  ( ( K  e.  HL  /\  ( D  e.  A  /\  ( S  .\/  T
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) )  /\  D  .<_  W )  ->  (
( ( S  .\/  T )  ./\  W )  .\/  D )  =  ( ( ( S  .\/  T )  .\/  D ) 
./\  W ) )
323, 17, 21, 23, 30, 31syl131anc 1200 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( S 
.\/  T )  ./\  W )  .\/  D )  =  ( ( ( S  .\/  T ) 
.\/  D )  ./\  W ) )
3310, 11, 12, 13, 14, 15cdleme10 29573 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  ->  ( S  .\/  D )  =  ( S  .\/  R ) )
343, 4, 7, 5, 6, 33syl212anc 1197 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( S  .\/  D
)  =  ( S 
.\/  R ) )
3534oveq1d 5772 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( S  .\/  D )  .\/  T )  =  ( ( S 
.\/  R )  .\/  T ) )
3611, 13hlatj32 28691 . . . . . 6  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  D  e.  A  /\  T  e.  A
) )  ->  (
( S  .\/  D
)  .\/  T )  =  ( ( S 
.\/  T )  .\/  D ) )
373, 5, 17, 18, 36syl13anc 1189 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( S  .\/  D )  .\/  T )  =  ( ( S 
.\/  T )  .\/  D ) )
3835, 37eqtr3d 2290 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( S  .\/  R )  .\/  T )  =  ( ( S 
.\/  T )  .\/  D ) )
3938oveq1d 5772 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( S 
.\/  R )  .\/  T )  ./\  W )  =  ( ( ( S  .\/  T ) 
.\/  D )  ./\  W ) )
4032, 39eqtr4d 2291 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( S 
.\/  T )  ./\  W )  .\/  D )  =  ( ( ( S  .\/  R ) 
.\/  T )  ./\  W ) )
412, 40syl5eq 2300 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( V  .\/  D
)  =  ( ( ( S  .\/  R
)  .\/  T )  ./\  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3963   ` cfv 4638  (class class class)co 5757   Basecbs 13075   lecple 13142   joincjn 14005   meetcmee 14006   Latclat 14078   Atomscatm 28583   HLchlt 28670   LHypclh 29303
This theorem is referenced by:  cdleme20bN  29629
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-iin 3849  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-1st 6021  df-2nd 6022  df-iota 6190  df-undef 6229  df-riota 6237  df-poset 14007  df-plt 14019  df-lub 14035  df-glb 14036  df-join 14037  df-meet 14038  df-p0 14072  df-p1 14073  df-lat 14079  df-clat 14141  df-oposet 28496  df-ol 28498  df-oml 28499  df-covers 28586  df-ats 28587  df-atl 28618  df-cvlat 28642  df-hlat 28671  df-psubsp 28822  df-pmap 28823  df-padd 29115  df-lhyp 29307
  Copyright terms: Public domain W3C validator