Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20bN Unicode version

Theorem cdleme20bN 29403
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, second line.  D,  F,  Y,  G represent s2, f(s), t2, f(t). We show v  \/ s2 = v  \/ t2. (Contributed by NM, 15-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme20.v  |-  V  =  ( ( S  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme20bN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  D )  =  ( V  .\/  Y
) )

Proof of Theorem cdleme20bN
StepHypRef Expression
1 simp1l 984 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  HL )
2 hllat 28457 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  Lat )
4 simp22l 1079 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  S  e.  A )
5 eqid 2253 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
6 cdleme19.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 28383 . . . . 5  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
84, 7syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  S  e.  ( Base `  K
) )
9 simp21 993 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  A )
105, 6atbase 28383 . . . . 5  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
119, 10syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  ( Base `  K
) )
12 simp23l 1081 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  T  e.  A )
135, 6atbase 28383 . . . . 5  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
1412, 13syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  T  e.  ( Base `  K
) )
15 cdleme19.j . . . . 5  |-  .\/  =  ( join `  K )
165, 15latj31 14049 . . . 4  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  T  e.  ( Base `  K
) ) )  -> 
( ( S  .\/  R )  .\/  T )  =  ( ( T 
.\/  R )  .\/  S ) )
173, 8, 11, 14, 16syl13anc 1189 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( S  .\/  R
)  .\/  T )  =  ( ( T 
.\/  R )  .\/  S ) )
1817oveq1d 5725 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( ( S  .\/  R )  .\/  T ) 
./\  W )  =  ( ( ( T 
.\/  R )  .\/  S )  ./\  W )
)
19 simp1r 985 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  H )
20 simp22r 1080 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  W )
21 simp31 996 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
22 simp33 998 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q
) )
23 cdleme19.l . . . 4  |-  .<_  =  ( le `  K )
24 cdleme19.m . . . 4  |-  ./\  =  ( meet `  K )
25 cdleme19.h . . . 4  |-  H  =  ( LHyp `  K
)
26 cdleme19.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
27 cdleme19.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
28 cdleme19.g . . . 4  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
29 cdleme19.d . . . 4  |-  D  =  ( ( R  .\/  S )  ./\  W )
30 cdleme19.y . . . 4  |-  Y  =  ( ( R  .\/  T )  ./\  W )
31 cdleme20.v . . . 4  |-  V  =  ( ( S  .\/  T )  ./\  W )
3223, 15, 24, 6, 25, 26, 27, 28, 29, 30, 31cdleme20aN 29402 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( V  .\/  D
)  =  ( ( ( S  .\/  R
)  .\/  T )  ./\  W ) )
331, 19, 9, 4, 20, 12, 21, 22, 32syl233anc 1216 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  D )  =  ( ( ( S 
.\/  R )  .\/  T )  ./\  W )
)
3415, 6hlatjcom 28461 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  =  ( T 
.\/  S ) )
351, 4, 12, 34syl3anc 1187 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( S  .\/  T )  =  ( T  .\/  S
) )
3635oveq1d 5725 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( S  .\/  T
)  ./\  W )  =  ( ( T 
.\/  S )  ./\  W ) )
3731, 36syl5eq 2297 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  V  =  ( ( T 
.\/  S )  ./\  W ) )
3837oveq1d 5725 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  Y )  =  ( ( ( T 
.\/  S )  ./\  W )  .\/  Y ) )
39 simp23r 1082 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  T  .<_  W )
40 simp32 997 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  T  .<_  ( P  .\/  Q ) )
41 eqid 2253 . . . . 5  |-  ( ( T  .\/  S ) 
./\  W )  =  ( ( T  .\/  S )  ./\  W )
4223, 15, 24, 6, 25, 26, 28, 27, 30, 29, 41cdleme20aN 29402 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  T  e.  A  /\  -.  T  .<_  W )  /\  ( S  e.  A  /\  -.  T  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( T 
.\/  S )  ./\  W )  .\/  Y )  =  ( ( ( T  .\/  R ) 
.\/  S )  ./\  W ) )
431, 19, 9, 12, 39, 4, 40, 22, 42syl233anc 1216 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( ( T  .\/  S )  ./\  W )  .\/  Y )  =  ( ( ( T  .\/  R )  .\/  S ) 
./\  W ) )
4438, 43eqtrd 2285 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  Y )  =  ( ( ( T 
.\/  R )  .\/  S )  ./\  W )
)
4518, 33, 443eqtr4d 2295 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  D )  =  ( V  .\/  Y
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   Basecbs 13022   lecple 13089   joincjn 13922   meetcmee 13923   Latclat 13995   Atomscatm 28357   HLchlt 28444   LHypclh 29077
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28270  df-ol 28272  df-oml 28273  df-covers 28360  df-ats 28361  df-atl 28392  df-cvlat 28416  df-hlat 28445  df-psubsp 28596  df-pmap 28597  df-padd 28889  df-lhyp 29081
  Copyright terms: Public domain W3C validator