Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20bN Unicode version

Theorem cdleme20bN 29766
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, second line.  D,  F,  Y,  G represent s2, f(s), t2, f(t). We show v  \/ s2 = v  \/ t2. (Contributed by NM, 15-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme20.v  |-  V  =  ( ( S  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme20bN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  D )  =  ( V  .\/  Y
) )

Proof of Theorem cdleme20bN
StepHypRef Expression
1 simp1l 981 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  HL )
2 hllat 28820 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  Lat )
4 simp22l 1076 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  S  e.  A )
5 eqid 2284 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
6 cdleme19.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 28746 . . . . 5  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
84, 7syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  S  e.  ( Base `  K
) )
9 simp21 990 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  A )
105, 6atbase 28746 . . . . 5  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
119, 10syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  ( Base `  K
) )
12 simp23l 1078 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  T  e.  A )
135, 6atbase 28746 . . . . 5  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
1412, 13syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  T  e.  ( Base `  K
) )
15 cdleme19.j . . . . 5  |-  .\/  =  ( join `  K )
165, 15latj31 14199 . . . 4  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  T  e.  ( Base `  K
) ) )  -> 
( ( S  .\/  R )  .\/  T )  =  ( ( T 
.\/  R )  .\/  S ) )
173, 8, 11, 14, 16syl13anc 1186 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( S  .\/  R
)  .\/  T )  =  ( ( T 
.\/  R )  .\/  S ) )
1817oveq1d 5834 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( ( S  .\/  R )  .\/  T ) 
./\  W )  =  ( ( ( T 
.\/  R )  .\/  S )  ./\  W )
)
19 simp1r 982 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  H )
20 simp22r 1077 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  W )
21 simp31 993 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
22 simp33 995 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q
) )
23 cdleme19.l . . . 4  |-  .<_  =  ( le `  K )
24 cdleme19.m . . . 4  |-  ./\  =  ( meet `  K )
25 cdleme19.h . . . 4  |-  H  =  ( LHyp `  K
)
26 cdleme19.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
27 cdleme19.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
28 cdleme19.g . . . 4  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
29 cdleme19.d . . . 4  |-  D  =  ( ( R  .\/  S )  ./\  W )
30 cdleme19.y . . . 4  |-  Y  =  ( ( R  .\/  T )  ./\  W )
31 cdleme20.v . . . 4  |-  V  =  ( ( S  .\/  T )  ./\  W )
3223, 15, 24, 6, 25, 26, 27, 28, 29, 30, 31cdleme20aN 29765 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( V  .\/  D
)  =  ( ( ( S  .\/  R
)  .\/  T )  ./\  W ) )
331, 19, 9, 4, 20, 12, 21, 22, 32syl233anc 1213 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  D )  =  ( ( ( S 
.\/  R )  .\/  T )  ./\  W )
)
3415, 6hlatjcom 28824 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  =  ( T 
.\/  S ) )
351, 4, 12, 34syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( S  .\/  T )  =  ( T  .\/  S
) )
3635oveq1d 5834 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( S  .\/  T
)  ./\  W )  =  ( ( T 
.\/  S )  ./\  W ) )
3731, 36syl5eq 2328 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  V  =  ( ( T 
.\/  S )  ./\  W ) )
3837oveq1d 5834 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  Y )  =  ( ( ( T 
.\/  S )  ./\  W )  .\/  Y ) )
39 simp23r 1079 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  T  .<_  W )
40 simp32 994 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  T  .<_  ( P  .\/  Q ) )
41 eqid 2284 . . . . 5  |-  ( ( T  .\/  S ) 
./\  W )  =  ( ( T  .\/  S )  ./\  W )
4223, 15, 24, 6, 25, 26, 28, 27, 30, 29, 41cdleme20aN 29765 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  T  e.  A  /\  -.  T  .<_  W )  /\  ( S  e.  A  /\  -.  T  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( T 
.\/  S )  ./\  W )  .\/  Y )  =  ( ( ( T  .\/  R ) 
.\/  S )  ./\  W ) )
431, 19, 9, 12, 39, 4, 40, 22, 42syl233anc 1213 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( ( T  .\/  S )  ./\  W )  .\/  Y )  =  ( ( ( T  .\/  R )  .\/  S ) 
./\  W ) )
4438, 43eqtrd 2316 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  Y )  =  ( ( ( T 
.\/  R )  .\/  S )  ./\  W )
)
4518, 33, 443eqtr4d 2326 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  D )  =  ( V  .\/  Y
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685   class class class wbr 4024   ` cfv 5221  (class class class)co 5819   Basecbs 13142   lecple 13209   joincjn 14072   meetcmee 14073   Latclat 14145   Atomscatm 28720   HLchlt 28807   LHypclh 29440
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-iun 3908  df-iin 3909  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-1st 6083  df-2nd 6084  df-iota 6252  df-undef 6291  df-riota 6299  df-poset 14074  df-plt 14086  df-lub 14102  df-glb 14103  df-join 14104  df-meet 14105  df-p0 14139  df-p1 14140  df-lat 14146  df-clat 14208  df-oposet 28633  df-ol 28635  df-oml 28636  df-covers 28723  df-ats 28724  df-atl 28755  df-cvlat 28779  df-hlat 28808  df-psubsp 28959  df-pmap 28960  df-padd 29252  df-lhyp 29444
  Copyright terms: Public domain W3C validator